
1

Longitudinal Trend Monitoring of Multiple Sclerosis
Ambulation using Smartphones

Andrew P. Creagh∗1, Frank Dondelinger2, Florian Lipsmeier2, Michael. Lindemann†2 and Maarten De Vos†3,4

Abstract—Goal: Smartphone and wearable devices may act
as powerful tools to remotely monitor physical function in
people with neurodegenerative and autoimmune diseases from
out-of-clinic environments. Detection of progression onset or
worsening of symptoms is especially important in people living
with multiple sclerosis (PwMS) in order to enable optimally
adapted therapeutic strategies. MS is a disease whose symptoms
typically follow subtle and fluctuating disease courses, patient-to-
patient, and over time. Current in-clinic assessments are often
too infrequently administered to reflect longitudinal changes in
MS impairment that impact daily life. This work, therefore,
explores how smartphones can administer daily two-minute
walking assessments to monitor PwMS physical function at home.
Methods: Remotely collected smartphone inertial sensor data was
transformed through state-of-the-art Deep Convolutional Neural
Networks, to estimate a participant’s daily ambulatory-related
disease severity, longitudinally over a 24-week study. Results: This
study demonstrated that smartphone-based ambulatory severity
outcomes could accurately estimate MS level of disability, as
measured by the EDSS score (r2: 0.56,p <0.001). Furthermore,
longitudinal severity outcomes were shown to accurately reflect
individual participants’ level of disability over the study duration.
Conclusion: Smartphone-based assessments, that can be performed
by patients from their home environments, could greatly augment
standard in-clinic outcomes for neurodegenerative diseases. The
ability to understand the impact of disease on daily-life between
clinical visits, through objective digital outcomes, paves the way
forward to better measure and identify signs of disease progression
that may be occurring out-of-clinic, to monitor how different
patients respond to various treatments, and to ultimately enable
the development of better, and more personalised care.

Index Terms—Gait, deep learning, multiple sclerosis, digital
biomarkers, smartphones

I. INTRODUCTION

Neurodegenerative diseases, such as multiple sclerosis (MS),
frequently fluctuate over time, and patient-to-patient, ensuring
that it is notoriously difficult to quantify effective therapeutic
interventions and disease management techniques. Current in-
clinic assessments are often too infrequent to track changes
in MS impairment over time. Importantly, it has been shown
that earlier identification of changes in PwMS impairment are
important to identify and provide better therapeutic strategies
[1]. As a result, there exists a great opportunity to augment
current clinical examination strategies, to integrate methods that
accurately and remotely monitor disease-related changes and
deterioration, that may occur at home and between clinician
visits.
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Although MS follows a highly heterogeneous and subject-
specific disease course, the disease profiles can be grouped
into four clinical phenotypes which are based on disease
progression [2], [3]: the majority of PwMS will initially
experience Relapsing–remitting MS (RRMS), a state dominated
by sudden acute symptoms developing (a “relapse”) over
days before generally plateauing over weeks or months [4],
termed “remission”. RRMS generally affects 85% of PwMS and
disease activity typically occurs acutely at a sub-clinical level.
Secondary-progressive MS (SPMS) can occur in some RRMS
patients, where the disease course continues to worsen with
or without periods of remission. Half of RRMS patients will
go onto develop SPMS [5]–[7]. Those experiencing consistent
but worsening symptoms can be thought of as having Primary-
progressive MS (PPMS) [4], [5], [7] (roughly 10% of PwMS
[6]). Progressive-relapsing MS is more rare (affecting fewer
than 5% of PwMS); it occurs from diagnoses as a progressive
disease course, with periods of relapse, but without any
remission periods.

Digital smartphone-based assessments offer the ability to
objectively monitor disability levels in people with multiple
sclerosis (PwMS) from out-of-clinic, at home environments
[8]–[12]. For instance, smartphone-based monitoring was
exemplified in a recent investigation by Bove et al. (2015) [13],
with this study demonstrating the feasibility of administering
daily smartphone-based tasks to PwMS over a one-year period.
These technologies can provide new data-driven metrics for
clinical decision-making during in-clinic visits [14] and may
be more accurate than conventional clinical outcomes, recorded
at infrequent visits, to detect subtle, progressive, sub-clinical
changes or trends in long-term PwMS disability [13].

Alterations during ambulation (gait) due to MS are a amongst
the most common indication of MS impairment [17]–[22]. It
has been shown that gait impairment affects quality of life,
health status and productivity [23] in persons with MS (PwMS),
with the prevalence of these reported impairments between
75% and 90% [24]. PwMS can display postural instability [18],
gait variability [19]–[21] and fatigue [22] during various stages
of disease progression. The gold-standard assessment of overall
disability in MS is the Expanded Disability Status Scale (EDSS)
[25], however there are specific functional domain assessments
such as the Timed 25-Foot Walk (T25FW), which is part of
the Multiple Sclerosis Functional Composite score [26], [27],
and the Two-Minute Walk Test (2MWT) which also assesses
physical gait function and fatigue in PwMS [28]. In recent years
however, there has been a shift towards the adoption of body
worn sensors to objectively evaluate ambulatory performance
in PwMS, circumventing the need for resource-intensive and
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TABLE I: Population Demographics1. Clinical scores taken as the average per subject
over the entire study, where the mean ± standard deviation across population are reported;
RRMS, Relapsing-remitting MS; PPMS, Primary-progressive MS; SPMS, Secondary-
progressive MS; EDSS, Expanded Disability Status Scale; T25FW, the Timed 25-Foot
Walk; EDSS (amb.) refers to the ambulation sub-score as part of the EDSS; [s], indicates
measurement in seconds;

HC
(n=24)

PwMSmilda

(n=52)
PwMSmodb

(n=21)

Age 35.6 ± 8.9 39.3 ± 8.3 40.5 ± 6.9
Sex (M/F) 18/6 16/36 7/14
RRMS/PPMS/SPMS 52/0/0 14/3/4
EDSS 1.7 ± 0.8 4.2 ± 0.7
EDSS (amb.) 0.1 ± 0.3 1.9 ± 1.5
T25FW [s] 5.0 ± 0.9 5.3 ± 0.9 7.9 ± 2.2

1 For more information on the study population we refer the reader to [15] and [16];
a PwMS with average EDSS < 3.5; b PwMS with average EDSS ≥ 3.5;

expensive gait laboratory equipment, but also opening up the
possibility to measure physical function outside of standard
clinical settings [14], [20], [21], [29]–[34]

This study builds upon our previous investigations [12], [15],
[35], where we have shown how inertial sensors contained
within consumer-based smartphones can be used to characterise
gait impairments in PwMS from a remotely administered Two-
Minute Walk Test (2MWT). The latter study first introduced
how state-of-the-art Deep Convolutional Neural Networks
(DCNN) can be applied to remote 2MWT smartphone sensor
data to determine a study participants’ status: such as healthy,
PwMS with mild, or PwMS with moderate disability. The work
presented here aims to evaluate how these DCNN severity
predictions from daily 2MWTs can characterise the status of
healthy participants versus PwMS with mild, or PwMS with
moderate disability over a 24 week period.

II. METHODS

A. Data
The FLOODLIGHT (FL) proof-of-concept (PoC) app was

trialled in a 24-week, prospective study in PwMS and HCs
(NCT02952911) to assess the feasibility of remote patient mon-
itoring using smartphone (and smartwatch) devices [11], [16].
Participants were provided with a preconfigured smartphone
(Samsung Galaxy S7) and smartwatch (Motorola 360 Sport)
with the Floodlight PoC app installed. A total of 97 participants
(24 HC subjects; 52 mildly disabled, PwMSmild, EDSS
[0-3]; 21 moderately disabled PwMSmod, EDSS [3.5-5.5])
contributed data which was recorded from a 2MWT performed
out-of-clinic [15]. Subjects were requested to perform a 2MWT
daily over a 24-week period, and were clinically assessed
at baseline, week 12 and week 24. For further information
on the FL app, dataset, and population demographics we
direct the reader to [16] and specifically to our previous work
[12], [15], which this study expands upon. Table I depicts
the population demographics for this study. All participants
provided informed consent, and the ethical approval was
obtained from ethics committee of the Hospital Universitari Vall
d’Hebron, Barcelona, Spain and the institutional review board
of the University of California San Francisco, San Francisco,
CA, USA, prior to study initiation.

B. Estimating Ambulatory-related Disease Severity from Smart-
phone Sensor Data

Smartphone inertial sensor data was recorded while par-
ticipants performed a daily, at home, two minute walk test
(2MWT). The raw accelerometer sensor data from each 2MWT
were then partitioned into multiple vector sequences (epochs),
of 2.56 sec (128 samples/epoch) with 50% overlap between
adjacent windows. A Deep Convolutional Neural Network
(DCNN) was then trained to classify a given epoch as having
been performed by a HC, PwMSmild or PwMSmod participant.
The DCNN model implemented has previously been introduced
in [12], where the network was first pre-trained on the
UCI smartphone-based Human Activity Recognition (HAR)
dataset, and thereafter fine-tuned on the data in FL for MS
severity classification. Briefly, a DCNN applied a series of
one-dimensional kernels on the raw sensor epoch xn with
an input (channel 1-4): Xn = (ax, ay, az, ∥a∥)⊤, where a
are acceleration vectors for the x-, y- and z- components
containing samples a = (x1, x2, ..., xT ) and ∥a∥ refers to
original orientation invariant signal magnitude. The DCNN
consisted of four causal convolutional blocks with batch
normalisation (BN) layers (momentum = 0.99, ϵ = 1e−2):
the 1st block extracted 32 fixed filters with a width of 9
samples, stride length of 1 (9× 1), with l2-norm regularisation
(λ = 1e−3); the 2nd and 3rd blocks learned 64 filters, with width
(3×1); the 4th block learned 128 filters with a width of 6 (6×1),
followed by a final 3-class dense fully connected softmax layer.
Max pooling operations were also applied in the 2nd and 4th

layers with pool size p=2 and down-scaled by stride factor s=2.
Smartphone orientation augmentation was performed randomly
rotating sensor-channel axis during training [36]. The DCNN
was trained to minimise a multi-class categorical cross-entropy
loss function for k ∈ {hc,mild,mod} to learn the optimal
network weights w, using an Adam optimization algorithm
with a learning rate lr = 1e − 5, as well as β1 = 0.9 and
β2 = 0.999 which determined the exponential decay rates for
the moment estimates of the gradient [37], [38]. The network
outputs are interpreted as ŷk(xn,w) = p(yk = k|xn). As such,
ŷk can be thought of as the probability that a given epoch
xn belonged to class k. A continuous estimate of severity,
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Fig. 1: Demonstration of how deep learning algorithms can transform smartphone measurements to predict MS patient
severity symptoms between clinical visits. Illustration of Deep Convolutional Neural Network (DCNN) applied to raw
smartphone inertial sensor data collected from a remotely executed Two-Minute Walk Test (2MWT), performed daily for
24-weeks.

the predicted level of MS disability, can then be captured by
taking an average of all epoch predictions over a test for a
given assessment day, d such that:

ŷd =
1

N

N∑
n=1

argmax
k

(p(ŷk = k|xn)) (1)

where N are the number of windowed epochs for a given
test date, d, and k lies in an ordinal range of [0, 1, ...K].
Therefore ŷd will be continuous such that 0 ≤ ŷd ≤ K and
can conceptualised as a naı̈ve estimate of MS disease severity,
mapping a predicted level of disability ranging from healthy
to mild to moderate.

Models were trained using a stratified, subject-wise, 5-fold
cross-validation (CV), with subjects randomly partitioned into
one of k=5 folds, as described previously in [15]. One set was
denoted the training set (in-sample), which was further split
into a smaller set for validation, using roughly 10% of the
training subjects. Predictions were evaluated on all available
2MWTS per subject in each of the (out-of-sample) test sets.

C. Longitudinal Trend Monitoring of Remote Smartphone-
Based Outcomes

Longitudinal trends of specific participants were examined
as a time-series by considering the severity estimates ŷ of
repeated 2MWTs over all their available data for the duration
of the FL study. While participants were requested to perform
a daily Two-Minute Walk Test (2MWT), some test-dates may
be missing; it was also observed that various participants had
differing adherence rates during the study. The number valid
2MWT recordings contributed for each subject group over the
study duration is presented in appendix figure A.1. Further
information related to participant adherence in the study is
reported previously in [11], [16]. As the goal of this work
was to perform longitudinal analysis of participants severity,
namely visualise the average severity trends over time, missing
2MWT outcomes were first imputed using piecewise linear
interpolation (PLI) [39], by considering ŷ as a time-series to
impute missing test severity observations on a given date. Note:
imputed 2MWTs were only included for calculation of average
trend estimation for individual participants and not for model
evaluation. Next, a simple trend estimation was applied to the

time sequence of severity estimates (ŷ) across days (d) using
a d− centred linear moving average filter (MAF).

ẑ[i] =
1

2N + 1

2N∑
j=0

ŷ[i+N − j] (2)

where ŷ[·] is the input sequence (severity estimates) and ẑ[·]
is the output (filtered) sequence (moving severity estimate) for
each dth day; 2N+1 defines the order of the filter, in this case
the number of days d used in the moving average. A 7-day
window was implemented in order to capture the trends in ŷd
over the study duration.

D. Statistical Analysis

The association between estimated continuous disease sever-
ity and EDSS was tested using (linear) Pearson’s (r) and (non-
linear) Spearman’s (ρ) correlation coefficient. A non-parametric
Kruskal-Wallis (KWt) test by ranks assessed the median
severity estimate between HC, PwMSmild, and PwMSmod
groups. Statistical differences in smartphone severity estimates
were also investigated within participants over the duration of
the study. For instance, mean differences in severity estimates
before and after specific events, such as the reporting of a
relapse, were assessed using a t-test. In cases where severity
estimates had unequal variances before/after an event, as
determined by a Brown-Forsythe (BF) test by medians [40], a
Welch’s t-test correction was applied. Furthermore, differences
in median severity estimates before/after each event were also
assessed with a non-parametric Mann-Whitney U test.

III. RESULTS

A. Digitally Estimated Severity Outcome

A continuous disease severity outcome was created by aver-
aging all 2MWT predictions (i.e. HC, PwMSmild, PwMSmod)
for each participant, calculated from each of the out-of-sample
test sets during cross-validation. A disease severity outcome
therefore mapped a posterior probability ranging from healthy,
to mild, and to moderate for each subject. The distribution
of the average severity per subject was displayed in figure 2,
and demonstrated the positive relationship between average
severity outcome and average EDSS per participant (over all
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Fig. 2: The relationship between the continuous disease severity
outcome estimate, EDSS and subject group. Figure depicts the scatter
plot demonstrating the positive correlation (r : 0.75; ρ : 0.71; p < 0.001)
between the average severity outcome and average EDSS score per subject. A
DCNN model was constructed based on the average class predictions (HC,
PwMSmild, PwMSmod) per subject over all 2MWTs, creating an estimated
continuous prediction probability distribution, ranging from healthy to moderate
MS. Each point therefore represents the average estimated severity outcome
(probability) for that subject. A black line represents the line of best fit between
severity and EDSS (r2 : 0.56, p < 0.001).

available EDSS scores for that participant), (Pearson’s r : 0.75;
Spearman’s ρ : 0.71; p < 0.001, r2 : 0.56, p < 0.001).
Model classification performance can also be determined by
thresholding the estimated continuous level of disability in
figure 2, at the boundaries between HC, PwMSmild, and
PwMSgroups, as reported in [12].

B. Longitudinal Characterisation of Digitally Estimated Sever-
ity Outcomes

Disease severity outcomes were evaluated for each 2MWT
performed per subject. As a result, longitudinal trends in
ambulatory impairment can be monitored by examining daily
2MWT estimates for participants over the duration of the FL
study. While the 24-week duration of the study and relatively
low level of baseline impairment of the participants meant that
we did not observe meaningful progression at the study cohort
level, we could still investigate the ability of our methodology
to capture participant-specific longitudinal trends. For example,
figure 3 examines the longitudinal severity estimate outcome for
for various representative correctly classified HC, PwMSmild
and PwMSmod participants. Individual 2MWT ambulatory
severity estimates are depicted from the 0th week until study
completion in week 24, where dashed black lines represented
site-visits where participants were assessed clinically. Blue
lines depicted the 7-day average trend in severity outcomes.

Figure 3a first depicted a HC subject. This participant was
examined at baseline (week 0; EDSS 0, T25FW: 5 [s]), midway
through the study (week 12; EDSS 01; T25FW: 4.5 [s]) and
at the study completion (week 24; EDSS: 0; T25FW: N/A2

1Note: an EDSS of zero in this case refers to a normal neurological exam,
the subject is healthy and has no disability.

2 N/A denotes scores not assessed at this visit.

[s]). It was observed that this subject was predicted as healthy
with a low severity, consistently across the entire study. Many
variations in severity outcomes were smoothed out across the
7-day moving average. Similarly, figure 3b demonstrated a
correctly classified, stable, PwMSmild participant over the
duration of the study. This participant was also clinically
examined at week 0 (EDSS: 2.5; T25FW: 6.8) week 12 (EDSS:
2.5; T25FW: 6.5 [s]) and at week 24 (EDSS: 3; T25FW: 6.6).
In comparison, figure 3c demonstrated a stable PwMSmod
subject. This participant was examined at baseline (week 0;
EDSS 3.5, T25FW: 5.4 [s]) and midway through the study3

(week 12; EDSS 4.5; T25FW: 4.9 [s]).
During the FLOODLIGHT study, four PwMS subjects

reported relapses using the FLOODLIGHT application on their
smartphone during the study. These participants’ ambulatory-
based 2MWT severity estimates were investigated in figure
4.

Figure 4a depicts the longitudinal severity outcome trend
for a PwMSmild subject who reported a relapse during the FL
PoC study. A black line depicts the date of relapse on-setting
during week 3, which was recorded by the participant using the
FLOODLIGHT application on their smartphone. Dashed black
lines represent site-visits where the participant was assessed
clinically. This subject was examined at baseline (week 0;
EDSS 1.5, T25FW: 4.9 [s]), week 12 (EDSS 1.5; T25FW:
N/A4) and at the study completion in week 25 (EDSS: N/A5;
T25FW: 5.5 [s]). In week 4, 7 days after reporting a relapse, the
participant was assessed during an “unscheduled visit” where
they exhibited a worsening of MS symptoms, i.e. an increase
in EDSS and gait related T25FW (EDSS: 2.5; T25FW: 7.5 [s]).
Their relapse was evaluated as a spinal topography outbreak.

Figure 4b assesses the severity outcomes for another
PwMSmild subject, with a clinical examination at baseline
(week 0; EDSS: 1.5, T25FW: 4.9 [s]), and during visit 2 (week
12; EDSS: 1.5, T25FW: 6 [s]). This participant reported a
relapse during week 23 where their EDSS rose by +1 during
their clinical examination during study completion (EDSS: 2.5,
T25FW: 5.9 [s]).

Figure 4c examines the longitudinal severity outcome trend
for a PwMSmod subject who reported a relapse during the
FL PoC study. A black line depicts the date of relapse on-
setting during week 13. This subject was clinically examined at
baseline (week 0; EDSS 3.5, T25FW: 4.9 [s]), midway through
the study (week 12; EDSS 3.5; T25FW: 6.6 [s]) and at the
study completion (week 24; EDSS: 3.5; T25FW: 10.3 [s]).

Lastly, the ambulatory severity estimates for a PwMSmod
participant who self-reported a relapse is shown in figure 4d.
This participant’s clinical examination was reported at baseline
(week 0; EDSS: 3.5; T25FW: 7.8 [s]), mid-study as (week
12; EDSS: 4; T25FW: 10.5 [s]) and during study completion
as (week 24; EDSS: 4; T25FW: 11.5 [s]). During the clinical
examination in week 12, this participant also reported non-
relapse adverse clinical events, occurring on unspecified dates
sometime between weeks 8 and 12. As such, the time between

3Note: clinical assessment scores were not made available for this participant
at study completion.

4See footnote 2
5See footnote 2
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(a) Correctly Classified HC Subject (T25FW: 4.8±0.4 [s])

(b) Correctly Classified PwMSmild Subject (EDSS: 2.7±0.3; T25FW: 6.6±0.2 [s])

(c) Correctly Classified PwMSmod Subject (EDSS: 4.0±0.7; T25FW: 5.2±0.4 [s])

Fig. 3: Panel plot illustrating the longitudinal severity estimate outcome for correctly classified HC, PwMSmild and PwMSmod subjects. Depicted
are the estimated level of disability for an example (a) HC subject; (b) a PwMSmild subject; (c) a PwMSmod subject during the study. Each circle represents
the severity outcome estimate for a 2MWT performed on a given date. Shaded blue lines depict the and 7-day trend, represented by the d-point centred moving
average across days (d). Missing test dates (which are not depicted) were imputed using piecewise linear interpolation. Dashed black lines represent site-visits
where the participant was assessed clinically.

week 8 and week 12 is marked in figure 4d beginning with
a long-dashed line. This PwMSmod subject was adherent to
completing daily 2MWTs, with severity outcomes estimates
consistently evaluated as moderately disabled up until week
8. Thereafter, the comparative number of completed daily
2MWTs dropped dramatically until study completion. It was
observed that the stability of severity estimates predicted as
PwMSmod diminished, with both greater variability between
severity estimates and to the adherence of the participant to
complete daily 2MWTs. Furthermore, a self-reported relapse
was reported by this subject during week 22 using the FL
application on their assigned smartphone, as marked by the
solid black line.

IV. DISCUSSION

The FL PoC study demonstrates the capability of smartphone-
based inertial sensor measurements to monitor ambulatory-
related impairments during a remotely administered 2MWT
to PwMS daily over a 24 week period. In this work, it

was shown how a deep network classification model could
(naı̈vely) estimate the level of participant disability from ordinal
classification categories. Severity outcome estimates stratified
across HC and PwMS groups and were strongly correlated to
disease status (r : 0.75; ρ : 0.71, p < 0.001), as measured by
the EDSS – considered the ground-truth assessment in PwMS
[25]. For instance, no misclassifcation of HC as PwMSmod was
observed, or vice-versa, indicating that severity estimates were
reflective of true disease status (figure 2). More interestingly,
those subjects at classification boundaries displayed severities
representative of their clinical assessments. For instance, those
with EDSS just above 3.5 (i.e. PwMSmod) were misclassified
more as PwMSmild compared to those with EDSS much greater
than 3.5, implying that a reflective estimate of disease severity
could be captured by transforming a DCNN model into a
simple probabilistic outcome per subject.
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(a) Relapsing PwMSmild Subject (EDSS: 1.9±0.5; T25FW: 4.6±3.0 [s])

(b) Relapsing PwMSmild Subject (EDSS: 1.8±0.6; T25FW: 5.6±0.6 [s])

(c) Relapsing PwMSmod Subject (EDSS: 3.5±0; T25FW: 7.3±2.7 [s])

(d) Relapsing PwMSmod Subject (EDSS: 3.8±0.3; T25FW: 9.9±2.0 [s])

Fig. 4: Panel plot illustrating the longitudinal severity estimate outcomes for participants who self-reported a relapse using the FLOODLIGHT
smartphone application during the study. Each circle represents the severity outcome estimate for a 2MWT performed on a given date. Shaded blue lines
depict the and 7-day trend, represented by the d-point centred moving average across days (d). Missing test dates (which are not depicted) were imputed using
piecewise linear interpolation. Dashed black lines represent site-visits where the participant was assessed clinically. Dates of self-reported relapse onset are
represented in black. Note: the participant in figure 4d also reported (non-relapse) adverse clinical events occurring on non-specified dates between weeks 8
and 12.

A. Examining Participant-level Longitudinal Trends

The longitudinal patterns of healthy controls versus partic-
ipants with varying manifestations of MS severity could be
characterised by examining severity outcomes over the duration
of the FL study for individual subjects. For instance, figure
3 depicted examples of stable trends for correctly classified
HC, PwMSmild and PwMSmod subjects respectively. While

participants had some incorrect predictions, the mean severity
prediction over all repeated tests reflected the participant’s true
class grouping.

Evaluating subject’s performance longitudinally suggested
that severity estimates may be sensitive to capture MS-symptom
worsening. An intriguing observation related to the stable
PwMSmod participant depicted in figure 3c, who was mainly
predicted with a severity of PwMSmod, with a relatively
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consistent 7-day average. Some sequences of tests were
predicted as milder however, particularly before the midway
clinical visit in week 13. Interestingly, after week 13, this
subjects’ EDSS rose by +1 to 4.5. A Brown–Forsythe (BF)
test demonstrated that this subject had greater variance in their
severity outcome before this clinical visit compared to after (BF,
p < 0.01). Median severity outcomes were not significantly
different between these time-points (Mann-Whitey U test,
p=0.34), however mean severity outcomes were found to be
significantly lower before this clinical visit than after (Welch’s
t-test: p<0.05). It should be noted however that a change in
EDSS scores between clinical visits did not correspond to
significant changes in ambulatory-based severity estimates for
all participants.

B. Examining Participant-level Relapse Events

During the FL study, four participants experienced relapses
which they self-reported using the application on their smart-
phones. Longitudinal analysis of the trajectories of daily
severity estimates from these subjects revealed useful insights
into the manifestation of relapses expressed in remote inertial
sensor data. For instance, two subjects displayed an increased
severity outcome up to and around the data of reporting
a relapse (figure 4a and 4c), suggesting that sensor-based
ambulatory outcomes could potentially be sensitive enough to
remotely capture relapse events.

Observing the PwMSmild participant who reported a relapse
(figure 4a), severity estimates increased after reporting a relapse,
which corroborated with a worsening of clinically assessed
symptoms from baseline (week 0; EDSS 1.5, T25FW: 4.9 [s])
to the unscheduled clinical visit, which was prompted by the
relapse (EDSS: 2.5; T25FW, 7.5 [s]). Examination of severity
outcomes leading up to week 3 demonstrated consistent “mild”
trends using 7-day moving averages. Interestingly, after the date
of onset of self-reported relapse, severity estimates rose towards
“moderate”, indicating that MS symptom manifestation had
worsened. Longer term analysis demonstrated that there was a
significantly higher variability in predicted severity outcomes
after relapse date than before (BF, p< 0.001). This subject was
further assessed during week 12, where their EDSS returned
to as it was reported at baseline (EDSS 1.5; T25FW: N/A).
Severity outcomes also returned to consistently “mild” towards
the end of the study from weeks 18 onwards, where median
(U test, p= 0.24) and mean (Welch’s t-test, p= 0.13) severity
outcomes where not significantly different before- and after-
relapse. This subject was predicted as PwMSmild over their
entire 2MWT outcome measures.

In contrast, the example participant presented in figure 4b
did not exhibit any significant changes in severity estimates
around the date of reporting a relapse in week 23. However,
it could also be noted that this subject’s EDSS scores rose by
+1 between week 12 and 24, and their ambulatory estimated
outcomes were more variable after week 12 (BF, p< 0.01).

Figure 4c depicted a relapsing PwMSmod subject, with
severity estimates that were consistently evaluated as “mild”,
up until week 13, where this participant reported a relapse on-
setting using the FL application on their smartphone. Severity

outcomes then increased towards “moderate” during week
13 and peaked at week 14, around the suspected relapse
date reported at the end of week 13. Thereafter, severity
outcomes stabilised to “mild” before becoming more variable
and “moderate” until the end of the study. Considering the
relapse reporting date as a threshold, it was found that severity
outcomes were significantly “milder” before relapse (where
severity outcomes evaluated as PwMSmild) than after relapse
on-setting (where severity outcomes evaluated as PwMSmod)
when testing between mean (Welch’s t-test, p< 0.001) and
between median (U test, p< 0.001) severity outcomes. A BF
test also signified that severity outcome variability was higher
after relapse on-setting than before (p< 0.01). This subject
was misclassified as PwMSmild using all available 2MWTs,
but interestingly was narrowly labelled a PwMSmod and not a
PwMSmild subject using their available EDSS scores (EDSS,
3.5 ± 0).

Finally, figure 4d describes the longitudinal severity out-
comes for a PwMSmod participant who was consistently
estimated as having moderate disability for the first 9 weeks of
the study period. During the mid-way assessment at week 12,
this participant recalled that non-MS related adverse clinical
events had occurred at unspecified points in the previous four
weeks. Interestingly, adherence to executing daily 2MWTs
dropped during this period, where a long-dashed line marks
the beginning between weeks 8 and 12 in figure 4d. It was
observed that after week 12, the variability in sensor-based
ambulatory severity estimates increased, where predictions
fluctuated between healthy and moderate. Furthermore, this
participant was non-adherent at providing daily 2MWTs after
week 12, in comparison than the first 9 weeks. Towards the end
of the study, this participant then self-reported an MS-related
relapse as having occurred in week 22. As such, we need to
consider not only that sensor-based outcomes could remotely
evaluate a patient’s level of disability, but that an absence of
available data itself might also be indicative of changes in
disability status.

C. Limitations
Despite the potential of smartphone-based outcomes to

remotely monitor individual participant’s ambulatory function
longitudinally, there are several limitations of this study which
must be considered. Importantly, the severity outcomes explored
in this work were naı̈ve estimates; although outcomes captured a
trend of increased impairment with higher severity (as modelled
by EDSS, figure 2), they should not be considered an exact
measure of MS, nor a surrogate clinical outcome to permit any
clinical diagnosis, or replace in-clinic assessments.

It should also be noted that the estimated level of participant
disability were not always accurate, there were many subject
misclassifications, as evident in figure 2. Particularly, some HC
were incorrectly estimated as MS, as well as some PwMSmod
who were underestimated to have milder level of disability.
In this work, we have only shown correct and stable estimate
examples (figure 3), however, it must be noted that some
participants, both healthy or with MS, followed irregular
trends or whose estimated level of disability were consistently
incorrect.
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Planned future work will aim to further characterise misclas-
sifications and participant variance. Given MS is heterogeneous
disease, where symptoms fluctuate day-to-day, it must be
considered that sometimes MS symptoms can be absent for a
given day, or sequence of days. For instance, this may help
explain why some PwMS participant 2MWTs can be evaluated
healthy. It also must be acknowledged that severity estimates
were based solely on 2MWT performance, an assessment
originally only intended to investigate ambulatory function
and fatigue in PwMS through the measurement of distance
travelled [41]–[43]. Many participants in the FL PoC study
may not have had ambulatory-related dysfunction, or whose
milder level of disease did not impair their gait, compared to
the healthy control cohort. As previously outlined, by definition
PwMS with EDSS<3 may have little to no gait impairment
[12], [15]. Furthermore, the blunt demarcation of mild and
moderate MS based exclusively on the clinical EDSS score –
which incorporates, but is not a direct measure of ambulatory
function – could lead to an unreliable assignment of those “mild”
versus “moderate” MS ambulatory function. For example, some
participants might exhibit “moderate” symptoms that are more
apparent in other functional domains, or have subtle alteration
in ambulatory ability that a remote 2MWT assessment will not
be sensitive to.

There are also several limitations associated with remote
2MWTs, which have been discussed previously in [12], [15],
and must also be considered in the context of remotely
estimating MS ambulatory severity. For example, although
the 2MWT was standardised and analogous to that of an in-
clinic performed assessment, the FL 2MWT was a remotely
executed out-of-clinic assessment. As such, the performance
of 2MWT can be highly influenced by the testing environment,
such as the length of the hallways, the number and frequency
of subject turns, or other factors which we cannot determine
remotely [15].

In this work we proposed that averaging over categorical
class predictions can create a simple and naı̈ve estimate
of ambulatory severity, but there could potentially be more
informative and robust methodological approaches to learning
disease severity estimates [44], [45]. It should be acknowledged
that our DCNN model did not truly utilise the time-series
nature of repeated 2MWT measurements from the FL PoC
study. Each repeated test was treated as independent, and as
such, trajectories did not incorporate any temporal information
across a population or within a subject (for example, whether
the previous day’s d − 1 test could affect the outcome at d
or d+ 1). It would be assumed that this is critically missing
temporal information which could help build more reliable and
accurate longitudinal models, and should be considered as a
key next step for future work. For instance, the repeated FL
assessments, and therefore sensor outcomes that were extracted,
could be analysed with models that exploit this aggregation of
temporal information directly [46], [47]. Another limitation of
averaging posterior class predictions is that we also average over
uncertain or marginal predictions, often introducing a noise and
variability into the unified estimate. Indeed, constructing more
robust severity outcomes would not only explore more accurate
modelling techniques, but should also aim to incorporate the

data captured from other functional domains in FL, such as
dexterity and cognition.

Nonetheless, we believe that the work presented in this
study to be of important value, emphasising the potential of
remote sensor outcomes to augment current in-clinic acquired
patient information. The long-term remote monitoring of PwMS
function could open up the space for true personalisation: the
clustering of disease trajectories or similar patients, estimating
the likelihood of disease progression, quantifying response to
different treatments as a population or an individual, as well
catching the mutable patterns of MS disease that are only
visible out-of-clinic and as a function of time.

V. CONCLUSION

This work demonstrates the capability of smartphone tech-
nologies to administer daily ambulatory assessments to patients
at home, and how that sensor data recorded can be transformed
through state-of-the-art deep networks, to remotely monitor
ambulatory-related level of disability over a 24 week period.
The rapid development of frequent, objective, and sensitive
digital measures of MS disability that can be administered
remotely could revolutionise routine in-clinic assessments for
PwMS. In the years to come, smartphone-based outcomes may
identify and monitor digital signs of MS-related degeneration,
ultimately informing better disease management techniques, to
learn how different patients respond to various treatments,
and potentially enabling the development of personalised
therapeutic interventions.

APPENDIX A
PARTICIPANT 2MWT ADHERENCE
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Fig. A.1: Participant adherence rates. Each line depicts the number valid
Two Minute Walk Test (2MWT) recordings contributed for each subject group
for the study duration.
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