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Smartphone- and Smartwatch-Based Remote
Characterisation of Ambulation in Multiple
Sclerosis during the Two-Minute Walk Test

A.P. Creagh∗1,2, C. Simillion2, A.K. Bourke2, A. Scotland2, F. Lipsmeier2, C. Bernasconi2, J. van Beek2,
M. Baker2, C. Gossens2, M. Lindemann†2 and M. De Vos†1,3,4

Abstract—Leveraging consumer technology such as smart-
phone and smartwatch devices to objectively assess people with
multiple sclerosis (PwMS) remotely could capture unique aspects
of disease progression. This study explores the feasibility of
assessing PwMS and Healthy Control’s (HC) physical function
by characterising gait-related features, which can be modelled
using machine learning (ML) techniques to correctly distinguish
subgroups of PwMS from healthy controls. A total of 97 subjects
(24 HC subjects, 52 mildly disabled (PwMSmild, EDSS [0-3])
and 21 moderately disabled (PwMSmod, EDSS [3.5-5.5]) con-
tributed data which was recorded from a Two-Minute Walk Test
(2MWT) performed out-of-clinic and daily over a 24-week period.
Signal-based features relating to movement were extracted from
sensors in smartphone and smartwatch devices. A large number
of features (n=156) showed fair-to-strong (R>0.3) correlations
with clinical outcomes. LASSO feature selection was applied
to select and rank subsets of features used for dichotomous
classification between subject groups, which were compared using
Logistic Regression (LR), Support Vector Machines (SVM) and
Random Forest (RF) models. Classifications of subject types were
compared using data obtained from smartphone, smartwatch
and the fusion of features from both devices. Models built on
smartphone features alone achieved the highest classification per-
formance, indicating that accurate and remote measurement of
the ambulatory characteristics of HC and PwMS can be achieved
with only one device. It was observed however that smartphone-
based performance is affected by inconsistent placement location
(running belt versus pocket). Results show that PwMSmod can
be distinguished from HC subjects (Acc. 82.2 ± 2.9%, Sen. 80.1
± 3.9%, Spec. 87.2 ± 4.2%, F1 84.3 ± 3.8), and PwMSmild (Acc.
82.3 ± 1.9%, Sen. 71.6 ± 4.2%, Spec. 87.0 ± 3.2%, F1 75.1 ±
2.2) using an SVM classifier with a Radial Basis Function (RBF).
PwMSmild were shown to exhibit HC-like behaviour and were
thus less distinguishable from HC (Acc. 66.4 ± 4.5%, Sen. 67.5
± 5.7%, Spec. 60.3 ± 6.7%, F1 58.6 ± 5.8).
Finally, it was observed that subjects in this study demonstrated
low intra- and high inter-subject variability which was represen-
tative of subject specific gait characteristics.

Index Terms—Gait, machine learning, multiple sclerosis,
sensor-based measure, smartphone, smartwatch

I. INTRODUCTION

MULTIPLE Sclerosis (MS) is a progressive neurodegen-
erative disease that is typically diagnosed in young

adults, causing varied and unpredictable physical and mental
disability and neurological deterioration over time [1]. Am-
bulatory function have been perceived as the most promi-
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nent physical impairments in people with multiple sclerosis
(PwMS) [2], who often have postural instability [3], gait
abnormalities [4] and pronounced gait variability [5] that can
manifest at different stages of diseases progression. Many
studies hint at the strong predictive nature in alterations during
ambulation (gait) due to MS [4], [6], [7]. Some commonly
used measures for assessing the disease state of PwMS are
a combination of clinician-administered rating scales, such as
the Expanded Disability Status Scale (EDSS) [8] and patient-
reported outcomes such as the Multiple Sclerosis Impact
Scale-29 (MSIS-29) and Multiple Sclerosis Walking Scale-12
(MSWS-12) [9]. The Timed 25-Foot Walk (T25FW), devel-
oped as part of the Multiple Sclerosis Functional Composite
score [10], [11], and the Two-Minute Walk Test (2MWT) are
used to assess physical gait function and fatigue in PwMS.
The 2MWT outcome is typically reported as distance travelled
[12], [13]. These clinically administered measures however
have a number of limitations, such as: low intra- and inter-rater
reliability [14], in addition to an infrequent administration,
which can miss episodic manifestations of disease. In recent
years there has been a shift towards the adoption of body worn
inertial sensors to more objectively evaluate gait performance
[7], [15]–[18]. Upper and lower body characteristics related
to dynamic balance during ambulation were captured from
inertial sensors affixed to the wrists, shank and trunk, which
were found to significantly differentiate PwMS and HCs
(p<0.05) compared to standard stop-watch timed tests such
as the T25FW and Timed-Up-and-Go (TUG) test [7]. It has
also been shown that PwMS have higher gait feature variability
than HC [6], [18]. Greene et al. have demonstrated that PwMS
can be distinguished from HC by modelling gait features from
shank mounted inertial sensors using a cross-sectional analysis
of the TUG test [17]. Many of these studies however asses
ambulatory ability using multiple inertial sensors during fixed
lengths of controlled walking, in-clinic. Consumer smartwatch
sensors (smartphone and smartwatches embedded with inertial
sensors) offer a unique opportunity to monitor physical func-
tion ubiquitously, more subtly and remotely in PwMS [19].
Furthermore, high-frequency monitoring assessments may be
more accurate than conventional outcomes recorded at periodic
visits in detecting subtle progressive sub-clinical changes that
may predict disease activity or long-term disability in PwMS
[20]. Earlier identification of changes in PwMS impairment are
important to identify and provide better therapeutic strategies
[21]. The ”Monitoring of Multiple Sclerosis (MS) Partici-
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TABLE I: Population Demographics

HC
(n=24)

PwMSmild
(n=52)a

PwMSmod
(n=21)b

P-value
HC vs PwMSmild1

P-value
HC vs PwMSmod1

Age 35.6 ± 8.9 39.3 ± 8.3 40.5 ± 6.9 0.12 0.07
Sex (M/F) 18/6 16/36 7/14 <0.0012 <0.012

EDSS 1.7 ± 0.8 4.2 ± 0.7
EDSS (amb.) 0.1 ± 0.3 1.9 ± 1.5
T25FW [s] 5.0 ± 0.9 5.3 ± 0.9 7.9 ± 2.2 0.26 <0.001
Total # smartphone tests 1926 5498 2024
Total # smartwatch tests 1436 4258 1502
Total # linked tests 1362 3921 1452
# tests per subject 57.6 ± 47.6 76.4 ± 45.7 70.1 ± 48.2 0.12 0.36
Total # running belt tests 905 2424 1296
# tests per subject 37.7 ± 42.7 46.6 ± 41.8 61.7 ± 48.8 0.41 0.08
Total # pocket tests 457 1497 156
# tests per subject* 30.5 ± 34.4 36.5 ± 37.3 11.1 ± 11.5 0.62 0.18

Clinical scores taken as the average per subject over the entire study, where the mean ± standard deviation across population are
reported; EDSS, Expanded Disability Status Scale; T25FW, the Timed 25-Foot Walk; EDSS (amb.) refers to the ambulation sub-
score as part of the EDSS; [s], indicates measurement in seconds;
a PwMS with average EDSS [0-3]; b PwMS with average EDSS [3.5-5.5];
* HC (n=15), PwMSmild (n=41), PwMSmod (n=14);
1 Mann-Whitney U Test; 2 Chi-squared (χ2) test.

pants With the Use of Digital Technology (Smartphones and
Smartwatches) - A Feasibility Study” (NCT02952911) was a
study to assess the feasibility of remote patient monitoring
using smartphones and smartwatch devices applying a range
of testing modalities in PwMS and HC [22], [23]. This
paper applies feature-based approaches to characterise gait
function in PwMS using remotely captured sensor-data from
the 2MWT. Machine learning (ML) techniques are then used
to distinguish subgroups of PwMS and HC as dichotomous
classification tasks.

II. METHODS

A. Dataset

PwMS and HC enrolled in this study were requested to
perform the 2MWT daily over a 24-week period. Subjects
were assessed clinically during site-visits at baseline, week 12
and week 24. Further information on NCT02952911, including
2MWT instructions1, adherence results and more detailed
demographics can be found at [22]. Each subject was also
provided with a waist-worn running belt and instructed to
attach the smartphone to the anterior of their waist. The
smartwatch can be worn on either wrist. Subjects with both
smartphone and smartwatch data available (n=97) are pre-
sented in table I. To allow comparisons between smartphone
and smartwatch devices, only test instances where subjects
have used both devices during their 2MWT were included in
this study. MS is a heterogeneous disease, and in order to
differentiate subjects with presumed gait symptoms, subjects
were divided into subgroups (mild and moderate) based on
their mean EDSS: PwMSmild (n = 52, EDSS [0-3]), and
PwMSmod (n = 21, EDSS [3.5-5.5]), using a similar threshold
to other MS gait studies [18]. EDSS is considered a primary
outcome for assessing the disease state of PwMS [8], [24].
By definition, gait disorders begin to become prominent in
subjects with EDSS≥3.5 and subjects with EDSS<3.5 are

1While the instructions given were analogous to those of a 2MWT, this was
not a controlled and clinically assessed 2MWT during site-visits and therefore
the outcome of walking distance was not measured.

mildly impaired [8]. Note: the entire range of subjects’ pooled
EDSS scores in this study was [0-7]. Differences in clinical
characteristics were analysed using the Mann-Whitney U Test,
except categorical differences in sex which were investigated
using a Chi-squared (χ2) test.

B. Feature Extraction
1) Pre-Processing: Subjects were provided with a Samsung

Galaxy S7 smartphone and Motorola 360 Sport smartwatch.
Both smartphone and smartwatch devices contain 3-axis ac-
celerometer (ax, ay, az) and gyroscope (gx, gy, gz) sensors
which were sampled at 50 Hz. Signals were filtered with a
4th order butterworth filter with a cut-off frequency at 17 Hz
[17], [25]. Orientation of the smartphone can be determined by
assessing through which axis the mean component of gravity
is incident upon during the 2MWT. Prior to windowing,
the sensor coordinate frame was aligned with the global
reference frame using the technique described in [26] and
thus the anterior-posterior axis (x–) was aligned with the
direction of motion, which was orthogonal to the vertical
(y–) and medial-lateral (z–) axis. Features were computed
on all sensor axes and also on the orientation invariant
signal magnitude, for example ‖a‖= (x2 + y2 + z2)

1
2 , where

x =
(
ax1

, ax2
, ..., axT

)
and so forth. Subjects’ whole 2MWT

tests were then windowed into non-overlapping 30 second
epochs to help minimise potential signal artefacts, including
subject turns during the test. Bouts of non-gait were filtered
using methods described in [25]. Features were extracted on
each epoch and the mean value and standard deviation per
2MWT were taken. The 2MWT was not clinically assessed
in this study during site-visits and as such the outcome of
walking distance [12], [13] is unavailable. Step counts have
been proposed to approximate the distance travelled [27],
and smartphone step count has also been shown to estimate
the walking distance in HC over a fixed length during the
six-minute walk test (6MWT) [28]. Subsequently, this study
implemented a step count, using methods described by Lee et
al. [29], to roughly approximate the 2MWT walking distance
for comparative purposes.
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Fig. 1: Schematic of gait processing pipeline. Users are requested to perform a remote 2MWT daily, for up to 24 weeks, with a smartphone
affixed within a waist-worn running belt on the anterior of their waist and smartwatch on their wrist. Sensor data is extracted from both
devices independently and signal-based features are computed on each 2WMT per subject. Classification models are then constructed, tuned
and evaluated using subject-wise k-fold cross-validation. Individual 2MWT predictions per subject are then majority voted to generate a
single prediction per subject, which are used to distinguish subgroups of PwMS and HC as binary classification tasks.

2) Energy Features: The continuous wavelet transform
(CWT) is a method used to measure the similarity between
a signal and an analysing function which can provide a
precise time-frequency representation of a signal [30]. It
has been shown that the Morlet wavelet effectively captures
gait-related spatio-temporal characteristics from acceleration
signals obtained from different body locations [31]. A sparse
representation of gait signals was also obtained using the
Discrete Wavelet Transform (DWT) where the signal was de-
composed into a number of different bandwidths expressed by
approximation and detail coefficients on which features were
computed. We extracted the wavelet coefficients experimenting
with three wavelet families (Daubechies, Symlets, Coiflets)
[32]. At each decomposition level, or bandwidth, we computed
the energy, entropy (using both Shannon’s and the log energy
definitions), and the Teager-Kaiser Energy Operator (TKEO)
on approximation (cA) and detail (cD) coefficients. Wavelet
Energy (both using CWT and DWT representation) is defined
as:

E(x) =

N∑
i=1

|xi|2 (1)

Wavelet (non-normalised) Shannon Entropy is defined as:

H(x) = −
N∑
i=1

x2i log(x
2
i ) (2)

where x = cDj ; x = cAj are the detail and approximation
coefficients at level j = 1, 2, 3, ...L;
Empirical Mode Decomposition (EMD) has been used pre-
viously to characterise the frequency range distributions of
gait rhythms from accelerometer signals [33]. Classical EMD
decomposes a signal into a small finite number of intrinsic
mode functions (IMFs) using the Hilbert-Huang transform
(HHT) to encode instantaneous frequency and amplitude infor-
mation [34]. IMFs offer a data driven approach to analyse non-
linear, non-stationary signals. The energy (1) of each IMF is
computed, where the first IMF represents the “high-frequency
(noise)” components with the latter IMFs capturing the rel-
atively “low-frequency (signal)” components of gait rhythm.
The relative signal-to-noise ratio (SNR) is then computed as

a feature to characterise the ratio of gait to higher frequency
perturbations in the sensor signal.

3) Statistical and Entropy Features: A number of statistical
features were also computed on the sensor signals such as
the mean, standard deviation, skewness, kurtosis, zero-crossing
rate and auto-correlation coefficients.
Multiscale entropy (MsEn) calculates the sample entropy
(SampEn) of a signal at increasingly coarser grains (scales)
[35]. MsEn is advantageous to entropy alone in that calculating
the entropy of a signal at multiple time scales discriminates
long-range correlations in complex systems from completely
random signals. Costa et al. [35], for example, found that
faster and unconstrained walking had more complex dynamics
than slower walking, as captured through greater SampEn
at different scales. Further to calculating raw MsEn over
the first 20 time scales, higher order MsEn-based statistical
features were also computed. Similar entropy parameters of
embedding dimension m = 2, and tolerance r = 0.2 were used
[35]. Recurrence period density entropy (RPDE) is a method
used to characterise the deviations from exact periodicity and
stochasticity within a signal [36], proposed here to capture the
ability to maintain consistent gait rhythm.
We refer the reader to the accompanying supplementary ma-
terial for a full description of all of the features extracted in
this study.

C. Feature Analysis

Univariate feature differences, taken as the median feature
value per subject over all available test observations, were in-
vestigated using the Mann-Whitney U Test for each paired sub-
ject group combination (HC, PwMSmild, and PwMSmod). As-
sociations between mean clinical metrics (EDSS and T25FW)
and median feature values per subject were investigated using
Spearman’s correlation (Rs). Differences in feature distri-
butions between smartphone locations identified as running
belt or pocket were investigated using a Mann-Whitney U
Test, for subjects who contributed both placements only. In
order to reduce our highly dimensional feature space (features
derived from 2 devices, 2 sensor sources with 3 axes per
sensor) prior to model building all redundant features were
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(a) Smartphone - Healthy Control (HC)
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(c) Smartwatch - Healthy Control (HC)
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(d) Smartwatch - PwMSmod

Fig. 2: Typical examples of accelerometer data recorded by smartphone device carried in a running belt for representative (a) HC and (b)
PwMSmod subjects, and their respective linked accelerometer data recorded by smartwatch device for the same (c) HC and (d) PwMSmod
subject. The first column represents of raw magnitude acceleration signals ‖a‖. The second column shows the top view of the CWT scalogram,
which is the absolute value of the CWT as a function of time and frequency. The third column corresponds to the scale-dependent (spectral)
energy density (Es) distribution of the CWT coefficients. (HC: T25FW, 3.6 ± 0.4 [s]); (PwMSmod: EDSS, 4 ± 0; T25FW, 8.1 ± 1.3 [s]);
Note the axis scales for figure (d).
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first removed based on Spearman’s correlation (Rs) to subject
group (HC, PwMSmild, PwMSmod) < 0.3 (n=93 and n=63
respective smartphone and smartwatch features retained). P-
values were corrected for multiple hypothesis testing using
methods described in [37]. Exploratory analysis of data and
feature structure was performed using principal component
analysis (PCA) [38]. Feature reproducibility was investigated
using the intraclass correlation coefficient (ICC) metric (see
appendix A for more details).

D. Model Construction

A number of machine learning (ML) techniques were ex-
plored in order to asses the ability to discriminate HC from
PwMS sub-groups as binary classification tasks. Model gen-
eralisability was determined using 5-fold subject-wise cross-
validation (CV), where the class distributions were stratified
across folds. After partitioning data into training sets, obser-
vations were randomly re-sampled in order to counter imbal-
anced subject class distributions as subjects each contribute
unequal quantities of test observations. CV was repeated 10
times to reduce bias in re-sampling and dataset splitting.
Logistic Regression (LR) was compared to Support Vector
Machines (SVM) and a Random Forest classifier (RF) [39].
LASSO regularisation for generalised linear models (lassoglm)
was employed in order to reduce the dimensions of the
extracted feature space into a ranked parsimonious set [39]. In
this case lassoglm is an extension of LASSO which uses a
logit link function: log( π

1−π ) = β0+β
ᵀx, yielding a posterior

probability mapping binomial responses. Features were ranked
per CV fold by increasing shrinkage regularisation parameter
λ, and cumulatively presented to LR and SVM classifiers. A
top feature ranking table was deduced by interrogating the
feature subsets selected by lassoglm at each fold and repeti-
tion. The relative stability of features selected was assessed by
recording the percentage of time that the feature was selected
in the top 5 and top 25 features at each fold and repetition.
Instead of using the the raw lassoglm coefficients (β) for
regression problems, it has been suggested that bias or predic-
tion error can be decreased by performing a separate regres-
sion post-lasso [40]. Observations were assigned to the class
yielding the largest posterior probability, where in the case
of the SVM, posterior probabilities were first obtained using
methods described by Platt [41]. SVM tuning was performed
for each fold via grid-search over internal CV to determine
optimal values of the Gaussian radial bias function (RBF)
kernel parameter γ and the penalty parameter C. We selected
the pair that gave the lowest CV misclassification error for
each added feature to the classifier [39]. A selection of RF
classifiers were built (using 1500 trees) and trained with a
split criterion based on Gini impurity. Classifier performance
was examined by varying the number of input variables chosen
at each node (denoted as mtry). Values of mtry used were
tested as the square root of the number of features (n=13);
double and half this value was also investigated as suggested
in [42]. Classification models were built using individual
test observations and metrics based on majority voting of
individual test predictions per subject are reported in order
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Fig. 3: The scale dependent (spectral) energy density Es distribution
of the CWT coefficients for HC, PwMSmild and PwMSmod groups
for (a) smartphone and (b) smartwatch devices. Bold lines and shaded
region corresponds to the median and standard deviation in spectral
energy amplitude per group.

to increase prediction robustness. Classification performance
metrics such as accuracy (acc), sensitivity (sen) and specificity
(spec) are computed, where the more diseased class is the
positive case. In order to account for the imbalance in the
number of subjects within each sub-group, we also report the
macro-average of the F1 score for each class, which is in-
versely weighted by the number of subjects in each class [43],
[44]. Distribution differences in performance results calculated
based on feature sets (smartphone, smartwatch, smartphone &
smartwatch) and classification models (SVM, LR, RF) built
across CV repetitions were tested using a Wilcoxon signed-
rank test.
All data processing and analysis was performed using
MATLAB vR2018a (The MathWorks, Natick, MA, USA).
Figure 1 schematically illustrates the entire gait processing,
model construction and evaluation pipeline.

III. RESULTS

A. Feature Analysis

Examples of raw sensor signals illustrate visual differences
between HC and PwMSmod for both smartphone (fig. 2a
and 2b) and smartwatch devices (fig. 2c and 2b). The CWT
spectral energy density distribution (fig. 3) demonstrated that
PwMSmod had less power than PwMSmild and HC (p<0.01).
It was additionally observed that the ratio of total (AUC) spec-
tral energy in the gait domain (0.5-3 Hz) to higher frequency
“noise” energy per subject was lower in PwMSmod than in HC
or PwMSmild smartphone tests (fig. 3a, p<0.001). This study
further focused on subjects who exhibit clinically moderate
disease symptoms, including the gait domain (PwMSmod,
EDSS [3.5-5.5]). Table II depicts the top features between
HC and PwMSmod as selected by lassoglm, the percentage
of time chosen in the top 5 and 25 selected features, along with
associated statistics and correlation to clinically administered
metrics. A number of these top features selected derive from
energy and entropy in the frequency bands for gait and
movement [15]. Smartphone device features contributed most
to the number of top features in the top 15 ranking (11 overall).
The top-ranked features show high stability and consistency
with good to excellent ICC values. Furthermore, these features
significantly discriminated HC from PwMSmod using the
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Fig. 4: Example of PCA performed on top 25 smartphone features. The first two components have been plotted per subject and their respective
test observations for HC (a), PwMSmild (b) and PwMSmod (c) subjects. Figure (d) represents the mean component value per subject coded
by subject group, HC (green circles), PwMSmild (light blue triangles) and PwMSmod (dark blue inverted triangles). Intra-subject variability
appears low, while inter-subject variability is distinctly high as subjects cluster within themselves.

mean feature values per subject. Many top features showed
significant correlation (p<0.05) to MS clinical measures in
PwMSmod, especially T25FW [11] and EDSS [8].
The top features selected by lassoglm were also compared
to total step count [29]. Step count was significantly corre-
lated with EDSS (Rs: 0.64, p<0.01) and T25FW (Rs: 0.52,
p<0.001) for PwMSmod groups only. Total step count did
not significantly distinguish HC from PwMSmild (p=0.09) or
PwMSmod (p=0.08) groups. However, a significantly lower
step count was observed in PwMSmod versus PwMSmild
(p<0.01).

B. Classification Analysis

To gather an understanding of added smartphone and smart-
watch feature performance we computed the out-of-sample
classification accuracy (HC vs. PwMSmod) as we varied the
number of features added into an SVM and LR classifier.
While subjects were instructed to preferably carry the smart-
phones in the provided running belt, analysis has found that
some participants wore the smartphone on either the running
belt or in a pocket during the 24-week testing period (HC,
n=15; PwMSmild, n=41; PwMSmod, n=14). Smartphone ori-
entations captured in landscape orientation were deduced to
have come from the running belt in the anterior waist loca-
tion (HC n=905; PwMSmild, n=2424; PwMSmod n=1296),
whereas portrait orientations were labelled as pocket locations
(HC, n=457; PwMSmild, n=1497; PwMSmod, n=156). No
subject in this analysis contributed only pocket locations.
SVM classification accuracy using running belt tests rather
than any location (either pocket or the running belt) (fig. 5a)
yielded improved accuracy; significantly so (p<0.05) beyond
3 features thereafter (besides 7-8 features added p=0.09 and
p=0.23 respectively). Classification accuracy plateaued after
15 features are added to the model. Many smartphone features
showed significantly different (p<0.05) distributions between
pocket and running belt locations. Given the smaller number
of subjects and highly skewed number of pocket observations
contributed per subject, where few subjects contributed the
majority of pocket tests, we were unable to test the classifica-
tion performance of pocket locations alone.

Classification performance was compared using features de-
rived from either smartphone or smartwatch devices or with
features derived from both devices (fig. 5b and table II). Max-
imum out-of-sample CV subject classification performance
was reached using an SVM for smartphone devices with 23
features (Acc. 82.2 ± 2.9, Sen. 80.1 ± 3.9, Spec. 87.2 ± 4.2,
F1: 84.3 ± 3.8), compared with 19 features for smartwatch
devices (Acc. 71.3 ± 3.6, Sen. 71.8 ± 6.8, Spec. 71.3 ±
3.7, F1. 71.1 ± 3.5). Furthermore, smartphone devices showed
significantly better accuracy (p<0.05) with at least 8 features
added to the classifier.
Additional classification models were also constructed to
explore the separability between PwMSmild and PwMSmod
groups, and HC and PwMSmild groups separately shown in
table IV. It was observed that classification of PwMSmild and
PwMSmod groups performed similarly: subject classification
was maximised (Acc. 82.3 ± 1.9, Sen. 71.6 ± 4.2, Spec.
87.0 ± 3.2, F1: 75.1 ± 2.2) using an SVM classifier with 21
features. Separation between HC and PwMSmild sub-groups
however was less visible; where maximum classification ac-
curacy was achieved (Acc. 66.4 ± 4.5, Sen. 67.5 ± 5.7, Spec.
60.3 ± 6.7, F1: 58.6 ± 5.8) with 19 features modelled using
an SVM.
Univariate and multivariate modelling of top-ranked signal-
based complexity features achieved improved classification
performance compared to using total step count alone as a
feature for all classification outcomes based on EDSS grouping
(fig. 5a) and table III.
Classification was compared across different classifiers (LR,
SVM and RF) as depicted in table IV. SVM models performed
best at distinguishing HC from PwMSmild and PwMSmod,
whereas the RF was marginally better at separating PwMSmild
vs. PwMSmod. Accuracy was not significantly different be-
tween LR, SVM and RF models for all binary classification
tasks expect at distinguishing HC from PwMSmod, with both
LR and SVM performing significantly better than the RF
(p<0.05). Maximal subject classification was obtained for all
classifiers using ≤ 26 features. It was observed that majority
voting improved all classifier’s performance.
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TABLE II: Comparison of step count and top features1 between HC and PwMSmod as selected by lassoglm across 5-fold
CV with 10 repetitions.

Device Feature Description
Top
5

(%)

Top
25
(%)

ICC P Rs

EDSS
Rs

T25FW

Smartphone # Steps Total number of steps counted over entire 2MWT [29]. 0.91(0.81-0.95) 0.08 0.64** 0.52***

1 Smartphone H(cD5(‖a‖)) Entropy (2) of the 5th DWT coefficient detail quantifies
the predictability of the gait signal roughly corresponding
to frequency range 3.3-1.5 Hz (faster gait).

78 80 0.96(0.93-0.98) *** 0.52* 0.47**

2 Smartwatch skew(Es(‖a‖)) Skewness as a measure of the asymmetry of the scale-
dependent energy density distribution of the CWT coef-
ficients Es calculated from the the acceleration signal.
This measures the relative magnitude of how far the
distribution deviates from the ‘normal’, which was used
as a proxy for smooth stable gait movements.

72 74 0.81(0.61-0.91) *** 0.56** 0.40**

3 Smartwatch max1(Es(‖a‖))
max2(Es(‖a‖)) The ratio of the maximum scale-dependent energy peak

density Es to the next highest peak, corresponding to the
frequencies computed using a CWT, over the 2MWT.

38 70 0.81(0.61-0.91) ** 0.45* 0.31*

4 Smartphone std(MsEn(‖a‖) Std. deviation in multiscale entropy over all scales.
This quantifies the variation in the predictability of a
gait signal over multiple temporal scales, where MsEn
characterises dynamic complexity of gait within a signal
[35].

30 100 0.80(0.59-0.90) *** 0.05 0.19

5 Smartphone E(cD5(‖a‖)) The energy (1) contained in the 5th DWT coefficient
detail roughly corresponding to frequency range 3.3-1.5
Hz. This could be a proxy for (faster) gait power.

24 86 0.94(0.88-0.97) *** 0.53* 0.49**

6 Smartphone RPDE(‖a‖) Recurrence period density entropy characterises the pe-
riodicity of a gait signal and the ability to maintain
consistent gait rhythm [36].

28 54 0.87(0.73-0.93) ** 0.21 0.32*

7 Smartwatch std(SNR(‖a‖)) Variability in the SNR between epochs, characterised by
IMFs and computed using EMD, with the signal sampled
every 0.5 [s]. This is analogous for the variability in the
ratio (amount) of gait to higher- frequency perturbations
over the 2MWT.

16 82 0.74(0.45-0.87) * 0.22 0.30*

8 Smartphone std(SNR(‖a‖)) (see above) 16 84 0.81(0.60-0.90) *** 0.20 0.40**
9 Smartphone skew(‖a‖) Skewness as a measure of the asymmetry of the proba-

bility distribution of the acceleration signal values. The
relative magnitude of how far a distribution deviates from
the normal which used as a proxy for smooth stable
ambulatory movements.

4 92 0.40(0.20-0.71) n.s. 0.30 0.06

10 Smartphone std(zcr(az)) The std. deviation in the zero-crossing rate calculates the
rate of sign-changes along the medial-lateral plane over
the 2MWT, which can measure the dynamic sway during
ambulation.

10 76 0.68(0.32-0.84) * 0.53* 0.47**

11 Smartphone zcr(‖a‖) The zero-crossing rate calculates the rate of sign-changes
in a signal, roughly capturing the static-to-dynamic tran-
sitions within gait.

24 68 0.82(0.65-0.92) * 0.15 0.33*

12 Smartphone std(az) The standard deviation in the acceleration values in the
medial-lateral plane for the 2MWT, which can measure
the dynamic sway during gait.

4 95 0.86(0.65-0.94) ** 0.15 0.10

13 Smartphone SNR(‖a‖) The mean SNR, where the signal and noise are char-
acterised by IMFs and computed using EMD, with the
signal sampled every 0.5 [s]. This is analogous for the
ratio (amount) of gait to higher- frequency perturbations
over the 2MWT.

10 76 0.73(0.46-0.87) * 0.10 0.32*

14 Smartwatch
MsEn(‖a‖)(:10)
MsEn(‖a‖)(11:) The ratio in multi-scale entropy over first 10 to the last

10 scales captures the dynamic complexity of gait versus
that of random fluctuations within the gait signal [35].

10 64 0.76(0.53-0.87) ** 0.38 0.50**

15 Smartphone kurt(‖a‖) Kurtosis as a measure of how outlier prone the distribu-
tion of the magnitude of acceleration signal values are to
quantify gait-related perturbations.

0 76 0.81(0.61-0.90) * 0.55** 0.61***

1 See supplementary material for a full description of all of the features extracted in this study;
ICC, Intraclass correlation coefficient (95% CI); Other statistics calculated on median feature value per subject (HC, n=24; PwMSmod n=21): P, Mann
Whitney U Test between groups; Rs EDSS, Spearman’s correlation to EDSS in PwMSmod; Rs T25FW, Spearman’s correlation to Timed-25 ft. walk test;
*p<0.05, ** p<0.01, ***p<0.001; n.s., not significant;

IV. DISCUSSION

The present study examined gait and physical function
in PwMS and HC using remotely captured smartphone and
smartwatch sensor data, while subjects performed a 2MWT.

The aim of this analysis was twofold: (1) can meaningful
features be derived from the remotely performed 2MWT that
correlate with clinical assessments, and (2) can multivariate
modelling of these performance metrics correctly distinguish



8

5 10 15 20 25

Number of Features

50

55

60

65

70

75

80

85

A
c
c
u
ra

c
y
 (

%
)

RUNNING BELT or POCKET

RUNNING BELT

TOTAL STEP COUNT (+SD)

(a)

5 10 15 20 25

Number of Features

50

55

60

65

70

75

80

85

A
c
c
u
ra

c
y
 (

%
)

SMARTPHONE

SMARTWATCH

SMARTPHONE & SMARTWATCH

(b)

Fig. 5: Comparison of out-of-sample subject classification performance (HC vs. PwMSmod) as features are added to an SVM classifier
using 5-fold cross validation with 10 repetitions. Figure (a) compares classification accuracy between smartphone tests performed using the
running belt only versus tests using either the running belt or the pocket. Total step count represents the total step count over the whole
2MWT if used as a feature for classification. Figure (b) compares classification performance using features from smartphone, smartwatch
and both devices. Confidence intervals denote one standard deviation (SD) around the quoted mean performance. For clarity, we present here
only the first 25 steps.

groups of HC and PwMS with mild and moderate disability.

A. Feature Evaluation
The 2MWT assesses walking distance in PwMS [12], which

can be indirectly approximated by the number of steps taken
[27]. Studies have found that cadence (steps/minute) during
the 6MWT and daily step count to be significantly different
between MS subgroups [45], [46]. This simple biomechanical
metric, as computed based on Lee et al. [29], showed less
discriminatory power between groups compared to signal-
based complexity features. However, it must be considered
that a recent comparative study calculating step counts in
PwMS has also found considerable variability in the precision
and accuracy of the algorithms and devices [19]. Ideally,
step length would be used to calculate distance travelled
during the 2MWT. Methods to derive step length however
are erroneous or highly complex [47], [48], and their use in
this study would also require validation in more controlled
(non-remote) settings. Therefore, we opted to approximate
the outcome of distance travelled for the remote 2MWT
using a simple step count and its inclusion as a classifying
feature is presented here primarily for comparative purposes.
Classification performance, benchmarked against total step
count, improved for all classification outcomes based on EDSS
group stratification through the usage of these features (table
III and table IV). A number of the top features characterise
the energy, frequency and variability of sensor signals recorded
in the gait domain (table II). In particular, percentage energy,
multiscale and Shannon’s entropy appeared prominently for

both devices. Figure 3 demonstrated that HC had more power
in the gait domains (0.5-3 Hz). Also, the entropy computed
in the gait band H(cD5(‖a‖)) was higher in PwMSmild and
PwMSmod, i.e. the predictability of the gait signal in PwMS
was lower than HC, with PwMS exhibiting lower energy and
slower movements in their gait. Mapping clinical meaning
to this could attribute PwMS, especially PwMSmod, to be
less predictable with increased gait variability. Those with
more severe MS could move more erratically as suggested
in the overall top features selected from both devices that
characterise the signal-to-noise ratio (SNR) and accelerometer
skewness, which could capture noise and jerk-like movements.

B. Classification Evaluation

It was observed that PwMSmod were distinguishable from
both HC and PwMSmild (Acc. 82.3 ± 2.9% and 82.3 ±
1.9% respectively), whereas PwMSmild were relatively less
distinguishable from HC (Acc. 66.4 ± 4.5%). One of the
primary means of PwMS disease assessment is the EDSS [8],

TABLE III: Smartphone-based step count classification out-
comes by EDSS grouping using a SVM with a RBF.

Classifier (Step Count†) Acc. F1

HC vs. PwMSmild 59.1 ± 3.2 54.9 ± 3.4
PwMSmild vs. PwMSmod 68.6 ± 3.7 59.8 ± 3.4
HC vs. PwMSmod 56.7 ± 3.8 60.0 ± 5.1

Mean and standard deviation across CV repetitions (%).
†Total step count over the whole 2MWT used as a single
feature for classification.
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hence it was used to stratify sub-groups of PwMS in this study.
While those subjects with EDSS≥3.5 are considered to have
some gait related impairment, analysis of EDSS ambulation
sub-scores demonstrated lower levels of ambulatory impact
[49]. The heterogeneity of MS as a disease and its effect on
symptom manifestation must also be considered when strati-
fying sub-groups based on clinical assessments and analysis
thereafter, especially for those with lower (milder) severity
scores [4], [8]. For example, examination of the mean PCA
value per subject (fig. 4d) using the first 2 components demon-
strated that some PwMSmod can appear like HCs and vice-
versa, where PwMSmild bisected regions between the two
groups. This is an outcome to be expected from such a model
considering that PwMSmild subjects experience very little
gait abnormalities, and T25FW times were not significantly
different between PwMSmild and HC (p=0.26).
LASSO is a common ML technique with integrated feature
selection and regression functionality (in this case LR) which
is robust for reducing large numbers of features [39]. LR, in
essence, describes a linear relationship between the predictors
with a non-linear mapping to response variables. LR models
performed similarly to the SVM and RF classifier, suggesting
perhaps a simple linear relationship exists between the combi-
nation of gait features. However there may be other non-linear
feature selection techniques (such as Relieff or mRMR), which
may select more optimal features in a more optimal ranking
[39]. RF models built in this study, which internally use
non-linear feature selection, did however perform significantly
worse than LR and SVM models for HC vs. PwMSmod
classification tasks (p<0.05). A limitation of this work is
that each subject’s tests were considered independent and
identically distributed (i.i.d), where subjects each contributed
a varying number of tests. In reality, test observations per
subject will be dependent and may be better suited to sequence
modelling approaches. For example, there may be alternatives
to RF in this application such as Mixed Effect Trees [50],
which consider repeated measures (tests) for classification and
could help overcome potential model biases related to the
varying number of observations per subject.
Comparing the classification accuracy of HC vs. PwMSmod
using smartphone and smartwatch devices showed compar-
ative prediction accuracy for a smaller number of features
added (<8) to our models (fig. 5b). However, beyond this
smartphone features demonstrated significantly improved per-
formance (p<0.05) over smartwatch features. Surprisingly,
drawing from both the smartphone and smartwatch feature
space did not lead to improved classification performance and
maximal accuracy was achieved using smartphone features
only (smartphone: Acc. 82.2 ± 2.9%; smartwatch: Acc. 71.3 ±
3.6%). Further investigations revealed a high variability in the
type of feature (calculated from smartphone vs. smartwatch)
selected at each fold. Interrogating the feature distributions
within CV folds highlighted poor feature generalisability be-
tween training and testing sets in some cases. Table II indicated
for example the top feature H(cD5(‖a‖)) was picked 80%
of the time, but when the feature was picked, it was nearly
always in the top 5 features per fold — in other folds the
distributions were changed so dramatically they would not

be picked. Combining features from both devices amplified
these problems and did not lead to improved results. Finally,
the added smartphone classification accuracy beyond 10-15
features was minimal (fig. 5b), demonstrating that accurate
classification can be achieved with a small number of features.

C. Considerations for the Remote Characterisation of Ambu-
lation in HC & PwMS using Smartphones and Smartwatches

Although remote monitoring has many advantages such as
unobtrusive, high-frequency assessment of disease, a num-
ber of confounding factors must be considered when taking
measurements in real-world non-laboratory scenarios. Some
examples encountered included the differences in subjects’
adherence during the study, some subjects not following the
prescribed protocols (instances of smartphones in pocket loca-
tions or the use of only one device during testing), along with
the many degrees of freedom associated with self-generated
patient data from real-world testing. While the instructions
given (see [22]) were standardised, analogous to that of an
in-clinic performed 2MWT [12], [13], the 2MWT in this
study was a remotely executed out-of-clinic assessment. The
performance of 2MWT can be highly influenced by the testing
environment such as the length of the hallways, the number
and frequency of subjects’ turns, or other factors which we
cannot determine remotely.
The number of unique HC (n=24), PwMSmild (n=52) and
PwMSmod (n=21) in this study was relatively few. Sampling
sufficiently sized data from a more diverse cohort should
also be considered in order to build robust and generalizable
models. For example, biases may exist related to the mismatch
in the male to female ratio between HC and PwMS groups
(table I). It was also acknowledged that there was and a high
standard deviation in the number of tests contributed by each
subject, however no subject group contributed significantly
more tests than another (table I). Besides individual subjects’
adherence rates, this variability was also partly due to the
exclusion criteria imposed on the data used in this analysis,
where only linked smartphone and smartwatch tests, and of
those, only smartphone tests performed with the running belt
were considered for fair comparisons between the devices.

TABLE IV: Smartphone-based subject classification outcomes
by EDSS grouping for various classifiers.

Classifier Acc. Sen. Spec. F1

HC vs. PwMSmild
LR 64.5 ± 5.8 68.3 ± 7.1 56.5 ± 5.7 58.3 ± 5.5
SVM 66.4 ± 4.5 67.5 ± 5.7 60.3 ± 6.7 58.6 ± 5.8
RF 63.2 ± 4.0 73.3 ± 4.1 41.4 ± 8.8 50.4 ± 5.6

PwMSmild vs. PwMSmod
LR 83.7 ± 2.4 71.7 ± 6.4 88.9 ± 2.3 77.1 ± 2.7
SVM 82.3 ± 1.9 71.6 ± 4.2 87.0 ± 3.2 75.1 ± 2.2
RF 84.0 ± 1.9 75.7 ± 1.5 87.8 ± 2.2 78.1 ± 2.3

HC vs. PwMSmod
LR 80.4 ± 5.3 76.7 ± 7.8 84.2 ± 5.6 80.0 ± 5.4
SVM 82.2 ± 2.9 80.1 ± 3.9 87.2 ± 4.2 84.3 ± 3.8
RF 76.2 ± 3.5 70.9 ± 5.9 81.1 ± 3.9 76.5 ± 3.9

Mean and standard deviation across CV repetitions (%); LR -
Logistic Regression; SVM - Support Vector Machines with a RBF;
RF - Random Forest.
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As such, performing CV on subject-wise splits with each
subject contributing varying numbers of tests can cause the
distributions of features to vary between CV partitions. This
helped attribute to the high classification variance between
folds and variability in the type and number of features needed
for maximal classification. Furthermore, subject heterogeneity
can also highly influence model robustness when data is
sparse. For example, fig. 4 illustrated the first two principal
components computed from PCA plotted against each other for
all HC and PwMS test observations. The top 25 smartphone
features were used to perform the PCA and hence represents
the overall structure of the features which are mostly selected
for classification. It was observed that intra-subject variability
appeared low, while inter-subject variability was distinctly
high as subjects clustered within themselves. Subject-wise
CV is hence confounded not only by low subject numbers
and sparse, heterogeneous data, but in this case was also
heavily exacerbated by subject’s gait feature patterns, which
were uniquely associated to the individual. This manifested
as problems exhibited in feature selection and generalisability
across CV partitions. There has been much discussion within
the academic community as to the advantages and disadvan-
tages of subject-wise versus observation-wise CV approaches
[51]–[53]. Subject-wise CV has been criticised in that it may
break assumptions to consistently estimate generalisation error
in heterogeneous data and lead to model under-fitting and
larger classification error [52]. However, in subject-wise CV
it is argued that there is no “leakage” of subject informa-
tion between training and testing partitions where models
can learn individual subjects’ characteristics [51]. Further
recent analysis by Neto et al. [53], using simulated and real-
world mobile data, demonstrated how various examples of
heterogeneity across subjects can lead to the identification of
subjects’ characteristics rather than disease in observation-wise
CV approaches. As such, this study adopted the conservative
subject-wise CV method to eliminate identity-confounding
factors, but acknowledges that sub-optimal classification and
model under-fitting can occur given the low number of subjects
contributing multiple observations in this study.
Finally, a high inter-dependence was observed within the fea-
ture space. A number of the top features within a source (de-
vice) and features between sources were highly correlated with
each other. This indicates that some features may represent the
same information. Fig. 6 in appendix A shows the inter-source
and intra-source feature correlation. This could attribute to
predictor redundancy and explain the marginal classification
performance beyond 10 features added for all sources (fig.
5b). However, smartwatch features reached a plateau in added
information before smartphone features, suggesting that this
device may contain less information and hence more feature
redundancy. Every top smartwatch feature (HC vs. PwMSmod)
characterises the relative power in gait to non-gait frequency
domains derived from CWT and EMD. It should be considered
that the location of smartwatch (wrist) sensor to smartphone
(running belt) may have a profound effect on the depth of
information that can be recorded about gait function. This may
be manifested by a larger and more varied number of useful
features (as discussed, the top smartwatch features chosen only

characterise the relative power in gait to non-gait frequency
domains).
Despite applying an orientation transformation during pre-
processing, it was found that some smartphone-based features
were also location dependent (running belt versus pocket) and
classification based on features from only one pose increased
the accuracy of our models (fig. 5a). As such, smartphone-
based tests performed with the running belt were considered
different to the smartphone in the pocket.

D. Future Work
This study demonstrated the feasibility of characterising gait

function in PwMS remotely using body-worn inertial sensors
embedded in consumer smartphones and smartwatches.
It was observed that classification performance was affected
by inconsistent placement location (i.e. some 2MWTs were
performed using the running belt versus others where the
smartphone was placed within a pocket). The results from this
study therefore emphasise the importance of a standardised
approach to remote sensor monitoring and advocates the use
of a consistent sensor location such as a running belt for future
studies. Advantages of running belts are that they offer a fixed
and standard placement location to capture gait characteristics,
and avoid the need for participants to have pockets or another
means to carry their device.
Adherence to the prescribed protocol was an issue observed in
this study however. It is acknowledged that instructing partic-
ipants to regularly carry their smartphone and smartwatch for
a daily 2MWT, and to affix their smartphone using a running
belt is both obtrusive and inconvenient. As such, perhaps
the use of a smartphone within a pocket, or even a single
smartwatch during passively collected free-living gait may
be a better option for the unobtrusive, long-term monitoring
of PwMS subjects. Future work is needed first however to
explore in greater detail: (1) the effect of placement location
of smartphone devices, and (2) to investigate the differences in
information captured by smartphone and smartwatch devices
for quantifying gait dysfunction in PwMS, particularly in
more controlled settings. These further studies should also
aim to compare the outcome measures investigated in this
work to clinically administered 2MWTs and in-clinic gait
measurement systems. This suggested analysis would allow
the further evaluation, understanding and improvement of the
most optimal protocols designed to explore how sensor data
can represent PwMS impairment remotely and out-of-clinic.
As MS symptoms fluctuate periodically, the real value of
remote monitoring PwMS may ultimately lie in investigating
test performance as a function of time. To sufficiently capture
the time-varying nature of MS ambulatory impairments it
will require both robust outcome measures and the design
and standardisation of feasible and unobtrusive protocols for
objective assessments — that can be delivered remotely and
administered frequently — such as those introduced in this
work.

V. CONCLUSION

This study demonstrates the benefits of ML and multi-
variate feature modelling in the identification of the signs
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of ambulatory function impairment in PwMS from remotely
captured smartphone and smartwatch inertial sensor data. A
combination of statistical- and signal-based features calculated
from both devices performed better than simple biomechanical
metrics such as step count, which was used to approximate
the standard 2MWT outcome of walking distance. Many
previous studies probing the characteristics and separability of
PwMS and HC have used multiple standalone inertial sensors
affixed to the body at various locations during controlled in-
clinic assessments [6], [7], [17], [18]. In this study it can
be seen that sufficient information for accurate MS symptom
characterisation may be captured in relatively few features
(≤26) obtained from an out-of-clinic 2MWT, using only
one device. It was found that PwMSmod, who experience
gait-related dysfunction, could be distinguished with a high
accuracy from PwMSmild and HC, whom the latter two
groups were more difficult to differentiate from each other.
The work presented here, with on-going future work, helps
establish a methodological foundation to construct models
that can identify patterns of PwMS ambulatory impairment
from remote gait assessments. MS is a heterogeneous, mutable
disease and subjects may experience symptoms in various
domains which hard thresholds on infrequently administered
clinical scales may fail to capture. Key advantages of objective
assessments like those in this study are that they can be
administered at high-frequency and longitudinally in out-of-
clinic environments.
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APPENDIX A
CALCULATION OF ICC

The intra-class correlation coefficient (ICC) is a widely used
metric to quantify the test-retest reliability of test observations
in the biomedical field [54]. The reliability of the feature
values can be inferred if we consider each feature value
over repeated test observations per subject. ICC (A,k) was
calculated for the the 14-day session median across subjects.
To be included in the analysis, subjects needed to have a
minimum of 3 measurements per window. Reliability was
categorised as either poor (ICC<0.5), moderate (ICC=0.5-
0.75), good (ICC=0.75-0.9) or excellent (ICC>0.9).

APPENDIX B
INTER-SOURCE AND INTRA-SOURCE CORRELATION
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Fig. 6: Pairwise correlation matrix showing the intra- and inter-
source correlation for the top 25 smartphone and smartwatch features
respectively. The top 10 smartwatch features are highly correlated
with each other, whereas the top 10 smartphone features exhibit much
less inter-correlation. The inter-source correlation is strong in the top
5 features between smartphone and smartwatch devices.
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