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Abstract. Objective: Smartphone devices may enable out-of-clinic assessments in

chronic neurological diseases. We describe the FLOODLIGHT Draw a Shape (DaS)

Test, a smartphone-based and remotely administered test of Upper Extremity (UE)

function developed for people with multiple sclerosis (PwMS). This work introduces

DaS-related features that characterise UE function and impairment, and aims to

demonstrate how multivariate modelling of these metrics can reliably predict the 9-

Hole Peg Test (9HPT), a clinician-administered UE assessment in PwMS.

Approach: The FLOODLIGHT DaS test instructed PwMS and healthy controls (HC)

to trace predefined shapes on a smartphone screen. A total of 93 subjects (HC, n=22;

PwMS, n=71) contributed both dominant and non-dominant handed DaS tests. PwMS

subjects were characterised as those with normal (nPwMS, n=50) and abnormal UE

function (aPwMS, n=21) with respect to their average 9HPT time (≤ or >22.7 [s],

respectively). L1-regularization techniques, combined with linear least squares (OLS,

IRLS), or non-linear Support Vector (SVR) or Random Forest (RFR) regression were

investigated as functions to map relevant DaS features to 9HPT times.

Main results: It was observed that average non-dominant handed 9HPT times were

more accurately predicted by DaS features (r2=0.41, P <0.05; MAE: 2.08 ± 0.34 [s])

than average dominant handed 9HPTs (r2=0.39, P <0.05; MAE: 2.32 ± 0.43 [s]), using

simple linear IRLS (P <0.01). Moreover, it was found that the Mean absolute error

(MAE) in predicted 9HPTs was comparable to the variability of actual 9HPT times

within HC, nPwMS and aPwMS groups respectively. The 9HPT however exhibited

large heteroscedasticity resulting in less stable predictions of longer 9HPT times.

Significance: This study demonstrates the potential of the smartphone-based DaS Test

to reliably predict 9HPT times and remotely monitor UE function in PwMS.

Keywords : Digital Biomarkers; Multiple Sclerosis; Hand and Upper Extremity Function;

Smartphone
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1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system,

affecting more than 2 million people worldwide [1]. The impairment of upper extremity

(UE) function and manual dexterity resulting from sensory and motor deficits is widely

reported across all subtypes of MS, although progressive MS is associated with higher

prevalence of UE dysfunction and greater impairment of manual dexterity [2, 3]. UE

dysfunction impacts people with MS’ (PwMS) ability to perform activities of daily

living, affecting their independence, work retention and quality of life [4, 5].

While various performance tests and patient-reported outcome measures are available

[6], the 9-Hole Peg Test (9HPT) is the most frequently used measure of manual dexterity

in MS research, clinical trials and clinical practice [7, 8]. The 9HPT requires participants

to repeatedly place and then remove nine pegs into nine holes, one at a time, as quickly

as possible [7]. Performance is commonly evaluated as the time taken to complete the

task, as measured in seconds [s]. Along with the Expanded Disability Status Scale

(EDSS) and timed 25-foot walk (T25FW), the 9HPT is typically used as a standardized

upper extremity outcome measure in MS and is integrated in the so-called Multiple

Sclerosis Functional Composite (MSFC) [8, 9, 10, 11].

The inter-rater and test-retest reliability of the 9HPT is generally high across a range

of disability levels, however most studies focus on more disabled PwMS populations

[7]. One large scale study with a healthy population for example reports high inter-

rater reliability but only moderate test-retest reliability [12]. Regardless, the 9HPT has

satisfactory discriminative and ecological validity in PwMS [13], although the coarse

nature of this test and its infrequent in-clinic administration has inherent limitations.

The low sampling frequency of 9HPT in-clinic administration, every 3 to 6 or 12

months in MS clinical trials or routine care practice respectively, may miss episodic

manifestations of the disease due to relapses. Additionally it may not be suited for

early and sensitive detection of insidious and slowly evolving change of UE function

as seen in progressive MS. While the 9HPT measure is restricted to the stopwatch

collection of the overall time to complete a manual dexterity task, it lacks the capacity

to discriminate and quantify variable qualitative patterns of alteration of hand or finger

motor skills and cannot capture intra-task fluctuations of performances. There is a need

for more continuous self-administered and refined outcome measures to assess more

comprehensively and reliably manual dexterity in MS and other chronic neurological

disorders affecting UE function.

As smartphones become more ubiquitous worldwide in daily life, it has been proposed to

utilise these devices to digitally augment specific analogue in-clinic tests. Sensor-based

methods enable large quantities of objective information to be collected longitudinally

and at low patient burden from both clinical and remote environments [14, 15].

These outcomes may be geared to outperform conventional rater-dependent neurological

performance tests with respect to resolution, precision and sensitivity [8].

Manual dexterity assessments are easy to implement using smartphones. Recently
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Figure 1: Demonstration of the FLOODLIGHT “Draw a Shape” test performed by a healthy

participant using a smartphone. Each participant was instructed to draw six different shapes presented

on the smartphone screen as fast and as accurate as possible, within a maximum time of 30 seconds

per each attempted shape: a diagonal line bottom left to top right and a diagonal line top right to

bottom left (not depicted), a square, a circle, a figure-8-shape, and a spiral.

digital spirals have been described as part of a validation study for the self-assessment

of PwMS versus the MSFC, which composed of a larger smartphone-based phone

application suite also testing gait, cognition and vision [16]. The drawing of shapes,

and specifically the drawing of spirals (spirography), is of particular interest since it

represents a direct quantitative test transformation of a commonly employed qualitative

clinical method to analyse patient’s handwriting on paper [17]. Digital spirals, typically

drawn using a stylus, are a common method used to analyse impairment in subjects with

neurodegenerative diseases [18, 19, 20, 21, 22, 16, 9, 23]. Prior efforts to develop digital

drawing platforms for clinical use have been mainly focused so far on assessing patients

with Parkinson’s disease (PD) through spirography [18, 24, 21, 25, 26, 27, 9, 28, 29].

However, Longstaff et al (2006) assessed spiral drawing performance in PwMS [22] and

Feys et al (2007) used digital circle, square and spiral drawings to quantify MS intention

tremor [20]. Vianello et al (2017) have developed a smartphone-based application in

healthy elderly subjects using a variety of shapes that subjects had to draw [30].

The FLOODLIGHT study (NCT02952911) was a proof-of-concept study to assess

the feasibility of remote patient monitoring using smartphones and smartwatches

in PwMS and healthy controls (HC) [31]. In this manuscript, we focus on

characterizing information to assess manual dexterity in PwMS that can be extracted

from FLOODLIGHT’s “Draw a Shape” (DaS) test.

We will demonstrate how features motivated by disease pathology and UE function

can be extracted from various shapes (circle, figure-8-shape, spiral, square) traced on

smartphone touchscreen and how these relate to UE impairment. We will investigate

further how multivariate modelling of these features can reliably predict the Nine Hole

Peg test (9HPT).
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2. METHODS

2.1. Dataset

FLOODLIGHT was a 24 week, proof-of-concept study aimed at assessing the feasibility

of using smartphone- and smartwatch-based tests to remotely monitor PwMS and

healthy controls (HC) [31]. The DaS test instructed all study participants daily to

draw six different shapes presented on the smartphone screen as fast and as accurate

as possible, within a maximum time of 30 seconds per each attempted shape‡. The six

shapes to be drawn were a diagonal line bottom left to top right, a diagonal line top right

to bottom left, a square, a circle, a figure-8-shape, and a spiral. The drawing had to be

performed with the index finger of the tested hand, where subjects alternated each day

between their dominant and non-dominant hand. Line shapes were not considered in

this study. Figure 1 depicts a demonstration of the DaS test performed by a participant.

A total of 93 subjects (HC, n=22; PwMS, n=71) contributed both dominant and non-

dominant DaS tests used for analysis in this study. Subjects were divided into normal

(nPwMS) and abnormal (aPwMS) subgroups with respect to their average combined

dominant and non-dominant 9HPT times over the entire study [7]. The threshold for

abnormal UE function was defined by the average 9HPT times greater the mean plus 2

standard deviations from normative data on a healthy population, pooled on dominant

(9HPT threshold: 17.8 + 2(2.2) [s]) and non-dominant (9HPT threshold: 18.5 + 2(2.3)

[s]) tests [32, 12]. Hence, the aPwMS subgroup consisted of PwMS with average 9HPT

times >22.7 [s] and the nPwMS subgroup of PwMS with average 9HPT of ≤22.7 [s].

2.2. Feature Extraction

2.2.1. Raw Data Processing Raw sensor data was collected from the smartphone

touchscreen during the active DaS test and stored as x- and y-screen coordinates with

a corresponding timestamp t, (x, y, t). A bespoke MATLAB script extracted attempted

and completed shapes from each test, along with the corresponding hand used. All

first attempts were used for further feature analysis. All data processing was performed

using MATLAB vR2018a (The MathWorks, Natick, MA, USA).

2.2.2. Characterization of Manual Dexterity Performance Multiple features were

extracted from each shape capturing temporal, spatial and spatiotemporal aspects

involved in the drawing task and potentially reflective of manual dexterity. Furthermore,

overall test performance statistics were calculated, such as the time taken to complete

all shapes and the number of shapes completed. For a full list of the features extracted

please see the accompanying supplementary material. A selection of some relevant

features are described below and illustrated in Figures [2-5].

‡ An individual’s data or feedback on their performance outcomes, as described in this study, are not

shared with the participating subjects.
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Table 1: Demographics and characteristics for Healthy Controls (HC) and PwMS subgroups, stated

as mean ± SD, over the entire study where applicable;

HC

(n=22)

nPwMS

(n=50)

aPwMS

(n=21)
P (a)

# tests per subject 74 ± 59 114 ± 51 107 ± 56 ∗1

Age, year 34 ± 9 40 ± 8 40 ± 8 n.s.1

Dominant hand

(Right/Left) (19/3) (44/6) (20/1) n.s.2

Male/Female 15/7 14/36 8/13 ∗∗2

MS diagnosis,

(PPMS/SPMS/RRMS) NA 2/1/47 1/3/17 n.s.2

EDSS NA 2.1 ± 1.26 3.3 ± 1.4 ∗∗∗1

9HPT, seconds

(dominant) 18.3 ± 1.7 19.4 ± 2.1 26.3 ± 5.4 ∗∗∗1

(non-dominant) 19.1 ± 1.8 20.1 ± 1.6 27.2 ± 5.0 ∗∗∗1

P (b) *3 **3 n.s.3

nPwMS: PwMS with average 9HPT ≤ 22.7 [s]; aPwMS: PwMS with average 9HPT >22.7 [s];

PPMS, Primary Progressive Multiple Sclerosis; SPMS, Secondary Progressive Multiple Sclerosis;

RRMS, Relapse Remitting Multiple Sclerosis; EDSS, Expanded Disability Status Scale; 9HPT,

9-Hole Peg Test; NA, not applicable.
(a) P-value between groups (b) P-value between hands
1 Kruskal-Wallis by ranks tests the null hypothesis that the continuous data in each categorical

group (HC, nPwMS, aPwMS) comes from the same distribution;
2 Chi-squared (χ2) tests differences between categorical groups (HC, nPwMS, aPwMS);
3 Wilcoxon signed rank tests 9HPT values between hands used for each group;
∗ P <0.05; ∗∗ P <0.01; ∗∗∗ P <0.001, n.s. - not significant.

2.2.3. Temporal Features Temporal features including drawing velocity, angular and

radial velocities and speed distribution measures were computed to assess temporal

irregularities, such as delays, smoothness, jerkiness, and rapid finger/hand movement

[33, 34, 35]. The dominant frequency and power spectral density was measured for

frequencies between 1–7 Hz, which was aimed to surface potential tremulous actions

like that of cerebellar intention tremor or to record ataxic movements, both commonly

exhibited in PwMS [34, 32]. Examples of drawing speed and power spectral density

(PSD) estimate of drawing speed are illustrated in Figure 1.

2.2.4. Spatial Features Features capturing Spatial aspects of finger or hand movements

were captured by features based on drawing error [18, 34, 35]. A new approach to

compute drawing error is presented in this study based on a shape-matching approach

known as the Hausdorff distance [36, 37]. Let X and Y be two-non empty subsets of a

metric space (M,d). The Hausdorff distance dH(X, Y ) is defined as:

dH(X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
(2.1)

where sup is the supremum and inf is the infimum and distance d is computed as the

Euclidean L2 norm. This metric compares the maximum distance of one set to the
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(b) nPwMS
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(c) aPwMS

Figure 2: Example illustrations of circle shape drawn by (L-R): HC (9HPT 18.4 ± 1.2 [s]), nPwMS

(9HPT 20.2 ± 2.0), aPwMS (9HPT 25.0 ± 2.1 [s]) subjects. Red points depict actual pixel points

drawn relative to interpolated reference coordinates (black). The top row demonstrates examples of

drawing speed for duration of time to draw each respective shape. Time series speed signal was first

filtered using a low pass filter with a cut off frequency of 8 Hz. The bottom row represents the power

spectral density (PSD) estimate of drawing speed which was computed using a Hamming window. Note

the time and PSD axis scale between the figures.

nearest point in another set [38], which can be used as a basis to compute the error

between the reference way-points (interpolated into a reference shape scaled to the

number of pixels drawn) and the subject’s drawing attempt. The maximal Hausdorff

distance is a measure of the absolute deviation from the reference shape, while the total

drawing error can also be defined as sum of the Hausdorff distances (i.e. the largest

minimum distances) between the drawn and reference shape, normalized by the number

of touch coordinates drawn. An example of Hausdorff distances can be found in Figure

3.

2.2.5. Spatiotemporal Features Digital drawings are unique in that they encapsulate

spatial and temporal performance information simultaneously: each pixel point contains

3-D data relating to the persons hand movement at that time. This information is

exploited to create discretized heat maps of touch events (x, y, t). A heat map not

only gives a visual representation of performance but can also be used to extract a

further important sub-set of features which may be sensitive to motor control or disease

fluctuations.

In order to compare intensity maps for image analysis, each shape drawn is scaled to

the same coordinates, while the timescales and relating colour intensities are based on

global not local pixel counts. Pixels are binned into a coarser grid, both for graphical
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(a) HC (b) nPwMS (c) aPwMs

Figure 3: Examples of figure-8-shapes drawn by (L-R): HC (9HPT 18.4 ± 1.2 [s]), nPwMS (9HPT

20.2 ± 2.0), aPwMS (9HPT 25.0 ± 2.1 [s]) subjects. Figure depicts actual pixel points drawn (blue)

relative to interpolated reference coordinates (black). Hausdorff Distance query points are illustrated

with red lines and maximal Hausdorff Distances (HausD, as measured in Pixels) are highlighted with

black circles; HC (64 Pixels) , nPwMS (90 Pixels), aPwMS (229 Pixels). The total drawing error

(HausDError) can also be defined as sum of the Hausdorff distances (i.e. the largest minimum

distances) between the drawn and reference shape, normalized by the number of touch coordinates

drawn. In this example he normalised drawing errors are: HC (31 Pixels), nPwMS (38 Pixels), aPwMS

(68 Pixels).

purposes and as a means to allow comparisons between subjects for each shape drawn.

A graded single colour intensity scheme is used to represent pixel densities, which is

transposed into an achromatic scale for image feature extraction.

Image features are extracted from both the shape drawings and their transposed

heatmaps. An example of a discretised heatmap is illustrated in Figure 4. Pixel

intensities measure the structural composition of such images, while the drawings are

also compared with an ideal drawing§ for similarities using measures such as 2-D image

correlation coefficient, or Mutual Information (MI) between the two images [39]. Image

entropy, i.e. image entropy of heat map-transposed shape drawings (converted to

grayscale) was calculated using:

H = −
∑
k

pk log2(pk) (2.2)

Where k is the number of grey levels and pk is the probability associated with each

grey level k. Entropy is a commonly used measure of disorder in a system and can be

used to in image analysis for texture mapping [40]. The topography of transposed pixel

intensity drawings become a function of finger movements and hence entropy a measure

of smooth, non-hesitant drawing.

Further features capturing hesitation times and aspects of fine directional changes during

drawing were calculated to capture elements of cognitive motor inferences known to

affect UE function in MS [4]. Finally, a new measure, celerity, was defined by calculating

§ An ideal drawing is calculated by interpolating reference shape coordinates scaled to the same number

of pixel points, irrespective the number of drawn pixels in the subject’s attempt.
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Figure 4: Pixel density heat map representation of spiral shapes drawn by (L-R): HC (9HPT 18.4

± 1.2 [s]), nPwMS (9HPT 20.2 ± 2.0), aPwMS (9HPT 25.0 ± 2.1 [s]) subjects. Screen coordinates

are first segmented into 2D bins of fixed width and drawing touch point coordinates are assigned to

respective bins. The number of touch coordinates per bin, and hence time, are represented by heat

map colour. This builds a spatio-temporal representation of digital spiral drawing which encode areas

of drawing hesitation or non-movements.

the ratio of successfully passed waypoints divided by the time taken to complete the

shape.

2.3. Regression Model to 9HPT

2.3.1. Data Selection This study aims to investigate the prediction of clinical 9HPT

times using features relating to UE function computed from the DaS test. Considering

a simple linear regression model of the form:

Y = βXᵀ + µ (2.3)

In this case, X is the design matrix and contains the median and standard deviation

of each feature per subject over all available test days for dominant and non-dominant

hand tests separately. The model errors µ are assumed to be normally distributed with

zero mean and constant variance, σ2. Response variable, Y , is denoted as the average

9HPT time per subject over the entire study (all baseline, week 12, week 24/study

completion observations considered) for each respective dominant and non-dominant

handed 9HPT separately. We assume that drawing performance will generally vary

depending on dominance [32, 20], therefore independent models were evaluated based

on dominant and non-dominant hands used.

2.3.2. Statistical Analysis Features were assessed for non-normality by visual

inspection. Those non-normal features were transformed using box-cox transformations

[41]. Pre-processing assessment of the response (9HPT) displayed a highly tailed

distribution, and as such the 9HPT was also transformed back towards Gaussianity

to help fulfil error assumptions of linear prediction [42].

Differences in median clinical metrics (EDSS, 9HPT) and feature values between
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Figure 5: Example of square shapes drawn by (L-R): HC (9HPT 18.4 ± 1.2 [s]), nPwMS (9HPT

20.2 ± 2.0), aPwMS (9HPT 25.0 ± 2.1 [s]) subjects. Normalised drawing velocity is shown with local

maximum and minimum speed highlighted in green and red respectively. Corresponding points on

shape drawing are also illustrated where local minimum velocity points represent dwell (hesitation)

time at corner locations. Note the time axis between figures.

subject-groups (HC, nPwMS, aPwMS) were tested using a Kruskal-Wallis test (KWt).

Categorical differences in sex were investigated using a Chi-squared (χ2) test. A Brown-

Forsythe test (BF) was used to evaluate the null hypothesis that the data in each

categorical subject groups (HC, nPwMS, aPwMS) have equal variances, against the

alternative that at least two of the data samples do not. The BF test calculates ANOVA

on the absolute deviations of the data values from the group medians [43]. Differences

in model residuals and model prediction errors between hands and between models were

also assessed using a Wilcoxon signed rank test.

Pearson’s correlation (Rps) and Spearman’s rank correlation (Rsp) was used to assess

the association of features to the 9HPT time univariately. Wilcoxon signed rank tests

were used to investigate differences in 9HPT values and features between dominant

and non-dominant handed tests. P -values were corrected using methods described by

Benjamini and Hochberg [44] in cases where multiple hypothesis testing was performed.

2.3.3. Model Generalisability To determine the generalisability of our models, stratified

5-fold subject-wise cross-validation (CV) was employed. This consisted of randomly

partitioning the dataset into k=5 folds which was stratified with equal proportions of

HC, nPwMS and aPwMS where possible. One set was denoted the training set (in-

sample), which was further split for into smaller set for parameter selection (validation)

using an internal 5-fold CV approach. The remaining data was then denoted testing set

(out-of-sample) on which predictions were made. CV was repeated 10 times with new

random partitions in order to reduce bias in re-sampling and dataset splitting.

2.3.4. Model Evaluation In order to reveal the (potentially nonlinear) functional

relationship between the DaS Test (as represented by the features extracted) and the

associated 9HPT, a number of regression models were evaluated based on mean absolute

error (MAE) and root-mean absolute error (RMSE). MAE is defined as: 1
N

∑N
i=1 |Yi−Ŷi|;

while RMSE is defined as 1
N

√∑N
i=1 (Yi − Ŷi)

2
, where Ŷ are the model predictions;
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and N are the number of observations in the training or testing set, respectively. To

prevent overfitting and reduce the dimensionality (M) of the DaS features, the “Least

absolute shrinkage and selection operator” (LASSO) method was employed [45]. LASSO

allows removal of features by shrinking some feature coefficients, β, in our regression

towards zero, filtering towards the most important measures whilst also making selection

decisions on sets of collinear features. LASSO imposes the L1-norm penalty to the

residual sum of squares over N test observations using non-negative values of shrinkage

parameter λ, yielding:

β̂LASSO = arg min
β


N∑
i=1

(
Yi −

M∑
j=1

βjXij

)2

+ λ
M∑
j=1

|βj|

 (2.4)

A top feature ranking table was deduced by interrogating the feature subsets selected

by LASSO at each fold and repetition. The relative stability of features selected was

assessed by recording the percentage of time that feature is selected at each fold and

repetition.

It has been suggested that bias or prediction error can be decreased by performing

a separate regression post-LASSO [46]. As such, features were selected using LASSO

and those features each presented to linear models where this study investigated the

performance of ordinary least squares (OLS), and iteratively re-weighted least squares

(IRLS), which minimizes the weighted sum of square using a “bisquare weighting”

function [42] [45].

It is possible that the DaS features do not combine linearly to predict the 9HPT and

such non-linear regression was also explored. Support Vector Regression (SVR) is a

widely used technique to perform non-linear regression by mapping the feature space

to a higher dimension using a “kernel trick” [47]. In this case, features selected per

CV-fold by LASSO are presented to SVR models, which are tuned via grid-search

to determine optimal values of kernel parameter γ, penalty parameter C, and L1

soft-margin regularization parameter ε. SVR models were tested using linear and

Gaussian radial bias function (RBF) kernels. Further to this, non-linear Random Forest

Regression (RFR) was also investigated using the whole feature set [48]. Regressors

were built on raw features and trained with a split criterion based on mean decrease in

RMSE and optimised over varying numbers of trees and the number of input variables

chosen at each node.

3. Results

PwMS subjects in this study were stratified into those with presumably normal

(nPwMS) and abnormal (aPwMS) UE function with respect to their pooled average

9HPT times. Table 1 represents the demographic information per subject group,

HC, nPwMS, aPwMS. The effects between different MS phenotypes such as primary

progressive pultiple sclerosis (PPMS), secondary progressive multiple sclerosis (SPMS)
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and relapsing remitting multiple sclerosis (RRMS) are provided in Table 1 but are not

considered for analysis. The effect of differences in the male to female ratio within each

subject group (HC, nPwMS and aPwMS), while imbalanced, was also not considered in

subsequent analysis.

In the overall population, 9HPT times were found to be significantly different

between dominant and non-dominant hands (P<0.05). Furthermore, 9HPT times were

significantly different between dominant and non-dominant hands for HC (P<0.05) and

nPwMS (P<0.01), but not for aPwMS (P=0.46). Two subjects’ average 9HPT times

(pooled over dominant and non-dominant) were found to be 38.9 and 41.9 [s] respectively,

which was greater than the mean plus 4 standard deviations (>38.1 [s]) from the entire

FLOODLIGHT population. These subjects were considered outliers with respect to the

available data and were subsequently removed from final predictive analysis.

3.1. Feature Demonstration

A cross-section of relevant features are illustrated in figures [2-5]. Each figure shows an

example from a representative subject from each subject group: HC, nPwMS, aPwMS.

Figure 1 for instance demonstrates how Hausdorff distance is calculated for the figure-8-

shape, which has been observed to increase with higher 9HPT times for both dominant

(Rsp: 0.49, P <0.001) and non-dominant handed tests (Rsp: 0.51, P <0.001).

As an example from the circle shape, drawing speed can be less smooth and more

variable in nPwMS and aPwMS than HC subjects, who tend to draw faster and more

consistently (Figure 2). The variability in absolute drawing speed for example was

significantly greater in both PwMS groups (KWt, P <0.001) for both hands. The

respective frequency distribution of drawing speed also revealed dominant peaks at

multiple frequencies for more variable shape drawing.

Pixel density maps can be created based upon the relative sampling stability of the

smartphone screen. The longer a finger touch pointer stays in a position the more it will

be sampled, and hence a heat map representation can be built from the finger movements

both temporally and spatially. Figure 3 illustrates spiral drawings represented as

discretized heatmaps. Areas of hesitation and non-movement are visually apparent

and characterised by dense regions of heat intensity. Image entropy encodes this

accumulation of hesitation and irregularity of drawing. It was observed that higher

spiral entropy values significantly correlated to higher 9HPT times (dominant, Rsp: 0.40,

P <0.001; non-dominant, Rsp: 0.45, P <0.001). Figure 4 demonstrates the calculation

of hesitation time and over shoot at the corners of square shapes. Values of drawing

speed were mapped to the original drawing for visual analysis.

3.2. Feature Evaluation

This study found 311 features were significantly correlated to the 9HPT (Spearman’s

Rank R: P <0.05). Wilcoxon signed rank tests between these features calculated

from dominant and non-dominant handed tests revealed 70% were significantly different
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between handed tests (P <0.05). It was observed that 40% of HC, 73% of nPwMS and

57% of aPwMS subject features differed significantly between hands (P <0.05).

Table 2 describes the top ten features selected by LASSO and relative frequency that

were picked for both dominant and non-dominant handed models. Image entropy was

the top feature for both handed tests. However, it was computed for spiral for dominant

and for the figure-8-shape for non-dominant handed models, respectively. Among these

top ten features, features extracted from the figure-8-shape and spiral shape features

rank most prominently with 4/10 and 5/10 figure-8-shape features in dominant and non-

dominant handed models, respectively, and 4/10 spiral features in both dominant and

non-dominant handed models. Interestingly, no square-based features are represented

in the top ten features for either hand. In contrast, it can be seen that spiral image

entropy and figure-8-shape Hausdorff distance were picked 100% of the time in dominant

handed models. figure-8-shape image entropy, the top feature for non-dominant models

was only picked 78% of the time, yet occupied the top rank. This indicates instances

where this feature may not be picked at all, but when it is, it occupies regions of high

importance. Nearly all top features for both handed models show moderate-to-strong

Pearson’s (linear) and Spearman’s (non-linear) correlations with 9HPT (Table 2).

3.3. Model Evaluation

It was observed that non-dominant handed models more accurately predicted 9HPT

times (MAE: 2.08 ± 0.34 [s]) than dominant handed regression models (MAE: 2.32 ±
0.43 [s]), using simple IRLS across 5 fold CV and 10 repetitions (P < 0.01). Figure 6

compares the out-of-sample test MAE between hands as a function of number of features

added to IRLS models across 5 fold CV and 10 repetitions. It can be seen that MAE

decreases as more features are evaluated in both dominant and non-dominant handed

models. Non-dominant handed tests exhibited lowest MAE with 6 features (2.21 ± 0.04

[s]) compared to dominant handed tests with 16 features (1.93 ± 0.08 [s]).

Scatterplots of the raw 9HPT predictions per subject averaged over all CV-repetitions

using IRLS reveal good agreement to their ground truth for dominant (r2=0.39) and non-

dominant (r2=0.41) tests (Figure 7). Breakdown of average 9HPT predictions within

each subject group demonstrated that HC and nPwMS had lower MAE compared with

aPwMS for both dominant (1.81 ± 1.32, 1.93 ± 1.12 [s]) and non-dominant (1.98 ±
1.15, 1.62 ± 1.10 [s]) handed models (Table 3). Subject’s considered aPwMS were much

more difficult to predict for both dominant (3.81 ± 2.28 [s]) and non-dominant (3.51 ±
1.56 [s]) 9HPTs.

MAE was higher in non-dominant handed models than dominant for HC subjects,

whereas non-dominant handed 9HPTs were predicted more accurately than dominant

for nPwMS and aPwMS. While the mean absolute error was not significantly different

between hands for HC (P =0.83) and aPwMS (P =0.94), a larger trend was exhibited

by the nPwMS group (P =0.09). Visual corroboration between (Table 3 and Figure 7)

reveal that at higher 9HPT values (i.e. aPwMS) the predictions were less accurate by
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Table 2: Comparison of top features between dominant and non-dominant handed models as selected

by lasso across 5-fold CV with 10 repetitions. Features were ranked per CV fold by increasing shrinkage

regularisation parameter and the percentage (%) of time that feature is chosen in the subset that

minimises the CV MSE in the validation set. For a full list of the features extracted and descriptions

see the supplementary material.

Shape Feature Description
%

Chosen
Rps Rsp

Dominant

1 spiral ImEntropy(HM) Image entropy 100% 0.48∗∗∗ 0.40∗∗∗

2 figure-8 HausD(X,Y ) Hausdorff distance 100% 0.46∗∗∗ 0.49∗∗∗

3 circle nPeaksNorm(RV ) # of peaks in radial velocity 82% 0.38∗∗∗ 0.39∗∗∗

4 spiral max(tpixel(x, y)) Maximum hesitation time 74% 0.43∗∗∗ 0.40∗∗∗

5 circle HausDmiddle(x, y) Hausdorff distance 58% -0.17 -0.30∗∗

6 figure-8 SD(AUC(x)) Std. deviation in drawing

error

68% 0.39∗∗∗ 0.48∗∗∗

7 figure-8 nPeaksNorm(v) # of peaks in velocity 64% 0.43∗∗∗ 0.45∗∗∗

8 spiral SD(kurt(RHO)) Std. deviation in kurtosis in

angular velocity

52% 0.31∗∗ 0.37∗∗∗

9 figure-8 SD(nPeaksNorm(RV )) Std. deviation in of peaks in

radial velocity

42% -0.17 -0.31∗∗

10 spiral nPeaks(RHO) # of peaks in angular velocity 32% 0.39∗∗∗ 0.37∗∗∗

Non-Dominant

1 figure-8 ImEntropy(HM) Image entropy 78% 0.52∗∗∗ 0.47∗∗∗

2 figure-8 iqr(AUC(x, y)) Interquartile range of draw-

ing error

96% 0.40∗∗∗ 0.52∗∗∗

3 spiral nPeaks(RV ) # of peaks in radial velocity 84% 0.51∗∗∗ 0.43∗∗∗

4 figure-8 MI(HM,HMref ) Spatiotemporal mutual infor-

mation

70% -0.50∗∗∗ -0.58∗∗∗

5 spiral ImEntropy(HM) Image entropy 66% 0.51∗∗∗ 0.45∗∗∗

6 spiral var(RHO) Variance in angular velocity 76% -0.40∗∗∗ -0.41∗∗∗

7 figure-8 HausD(X,Y ) Hausdorff distance 72% 0.49∗∗∗ 0.51∗∗∗

8 spiral SD(nPeaks(v)) Std. deviation in of peaks in

drawing speed

58% 0.51∗∗∗ 0.37∗∗∗

9 circle HDE(HM,x, y)
Hausdorff distance x

Image entropy
52% 0.40∗∗∗ 0.47∗∗∗

10 figure-8 kurt(RV ) Kurtosis in radial velocity 36% 0.52∗∗∗ 0.46∗∗∗

figure-8 referes to the figure-8-shape drawn by subjects;

Rps, Pearson’s correlation to 9HPT; Rsp, Spearman’s correlation to 9HPT;
∗ P <0.05; ∗∗ P <0.01; ∗∗∗ P <0.001.

greater magnitudes. Non-linear techniques also exhibited this pattern.

Figure 7 illustrates the intra- and inter-subject variability of the 9HPT. The within-

subject variability of the 9HPT increased with higher 9HPT values (r2=0.54, P <0.001;

Rps: 0.73, P <0.001; Rsp: 0.57, P <0.001). A Brown-Forsythe test for equal variances

in Y between subject groups (HC, nPwMS, aPwMS) demonstrated that the between-

subject variability in 9HPT also increased with each subject group (P =0.02). In
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Figure 6: Out-of-sample test MAE [s] as features are cumulatively added to an IRLS model. Dominant

and non-dominant handed models are built separately for predictions Ŷ of average Y 9HPT times [s]

for each hand using 5-fold CV with 10 repetitions. Confidence intervals denote one standard deviation

(SD) around the quoted mean performance across CV repetitions. Features are pre-selected and ranked

within each fold using LASSO feature selection by varying shrinkage parameter λ. Minimum MAE was

obtained with 16 features using the dominant handed model (MAE: 2.21 ± 0.04 [s]) and with 6 features

using the non-dominant handed model (MAE: 1.93 ± 0.08 [s]).

concordance with Table 3, aPwMS were shown to exhibit greater variability than HC

and nPwMS, where higher 9HPT times tend to have much greater within- and between-

subject variance. Finally, Table 4 compares the out-of-sample test error from the 4

respective models built in this study. There were no significant differences observed

between any of the model predictions.

4. Discussion

The present study examines UE function in PwMS with mild-to-moderate disability in

comparison with HC using DaS, a self-administered digital drawing test captured on a

smartphone, and demonstrates how modelling of DaS features from a test can reliably

predict the average time of the clinician-administered 9-Hole Peg Test (9HPT).

It has been proposed that smartphone-based tests developed for repeated assessments

in remote settings may offer reliable and objective metrics that could capture a unique
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(a) Dominant (b) Non-Dominant

Figure 7: Scatter plot of average 9-hole peg test (9HPT) times Y versus predicted Ŷ 9HPT times per

subject for (a) dominant (r2=0.39, P <0.05) and (b) non-dominant (r2=0.41, P <0.05) handed models

using IRLS. Values of Ŷ are averaged over all CV repetitions. PwMS were grouped into presumably

normal (nPwMS) versus abnormal (aPwMS) hand/arm function based on an upper limit of normal

range defined as the average 9HPT time for HCs plus two standard deviations over pooled dominant

and non-dominant handed tests (> 22.7 [s]). HC subjects are illustrated using green circles, nPwMS

with light blue inverted triangles, and aPwMS are depicted using dark blue triangles. A black line

represents perfect predictions.

window in a subject’s disease state and previously unseen or inappropriately estimated

characteristics of MS disease [49].

Due to the inherently heterogeneous dissemination in space and time of multiple

sclerosis, PwMS experience varying levels of dysfunction or fatigue across different

physical domains [50]. As a method to characterise the PwMS population in this study

we have divided PwMS into those with presumed UE function abnormality (aPwMS),

Table 3: Mean absolute error (MAE) in IRLS predictions Ŷ of average Y 9HPT times [s] per subject

group over dominant, non-dominant and pooled dominant and non-dominant handed models. Average

MAE is calculated per subject using 5-fold CV over 10 repetitions. Standard deviations (SD) represent

the SD per subject-group. Wilcoxon signed rank test between hands used for HC (P=0.83), nPwMS

(P=0.09) and aPwMS (P=0.94).

Dominant Non-Dominant Pooled
HC 1.81 ± 1.32 1.93 ± 1.12 1.97 ± 0.98

nPwMS 1.98 ± 1.15 1.62 ± 1.10 1.90 ± 0.89

aPwMS 3.81 ± 2.28 3.51 ± 1.56 3.75 ± 2.00

2.32 ± 1.66 2.08 ± 1.39 2.31 ± 1.42



16

Figure 8: Scatter plot of mean 9HPT per subject, as measured in seconds [s] against the standard

deviation (SD) pooled over all visits for both dominant and non-dominant handed tests and coloured by

subject group. A black line represents the least squares line of best fit (r2=0.54, P <0.001). PwMS were

grouped into presumably normal (nPwMS) versus abnormal (aPwMS) hand/arm function based on an

upper limit of normal range defined as the average 9HPT time for HCs plus two standard deviations

over pooled dominant and non-dominant handed tests (>22.7 [s]). HC subjects are illustrated using

green circles, nPwMS with light blue inverted triangles, and aPwMS are depicted using dark blue

triangles. The 9HPT is shown to exhibit large heteroscedasticity. It was observed that the within-

subject variability of the 9HPT increases with higher 9HPT values (Rps: 0.73, P <0.001; Rsp: 0.57,

P <0.001). A Brown-Forsythe test for equal variances in Y between subject groups (HC, nPwMS,

aPwMS) demonstrated that the between-subject variability in 9HPT also increases with each subject

group (P=0.02).

Table 4: The out-of-sample test performance metrics of average 9-hole peg test (9HPT) times Y

versus predicted Ŷ 9HPT times per dominant and non-dominant handed models. Ordinary least

squares (OLS) and iteratively re-weighted least squares (IRLS) are compared to Support Vector (SVR)

and Random Forest (RFR) regression. Models are built using 5-fold CV with 10 repetitions. The mean

MAE and RMSE per CV is presented, where the standard deviation (SD) represents variability across

CV repetitions.

Dominant Non-Dominant

MAE [s] RMSE [s] MAE [s] RMSE [s]

OLS 2.33 ± 0.49 3.03 ± 0.67 2.09 ± 0.36 2.65 ± 0.42

IRLS 2.32 ± 0.43 3.03 ± 0.61 2.08 ± 0.34 2.61 ± 0.39

SVR 2.09 ± 0.42 2.78 ± 0.64 2.01 ± 0.31 2.54 ± 0.38

RFR 2.09 ± 0.38 2.69 ± 0.62 1.84 ± 0.26 2.34 ± 0.35
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and those with normal UE function (nPwMS), based on average recorded 9HPT times.

Abnormal 9HPT times were considered as 9HPT times greater than two standard

deviations beyond hand-matched normative data from a healthy population [32]. While

applying hard thresholds on clinically administered scales is a blunt stratification

method, distinct attributes of each group were apparent and will be discussed with

respect to features and predictions.

4.1. Feature Discussion

Previous digital upper extremity function assessments have focused mainly on the spiral

drawing [26, 27, 9, 28, 29, 21, 22] in Parkinson’s disease, while those incorporating other

types of shapes or drawings have been sparse apropos the information they have ex-

tracted [30]. By considering other shapes such as the circle, square, and figure-8-shape,

it was hoped to probe all aspects of hand function along with MS-specific pathological

impairments such as ataxia, various tremor types, and spasticity [17, 51, 4, 5]. UEHMF

impairments manifest differently in PwMS as opposed to in Parkinson’s. This lead our

study to extract a more exhaustive feature space. Both previously developed and novel

features were derived and tested for their clinical validity through multivariate mod-

elling of the 9HPT a typically used UE function test in PwMS. Figures [2-5] aim to

characterise some of the DaS features developed in this study and how the level of UE

impairment may influence each shape drawn and resultant feature value. Univariate

analysis of these DaS features demonstrated moderate-to-strong Pearson’s and Spear-

man’s correlations with the 9HPT (Table 2), with many coefficients comparable to a

range of outcome measures for upper extremity function, collated by Feys et al [7].

Consistent with our study, Feys et al [20] identified handedness as a possibly influen-

tial factor on digital drawing performance, although they were unable to test this in a

healthy sub-population. Erasmus et al [32] observed a significant difference in drawing

error in PwMS subgroups with cerebellar upper limb ataxia, and general worse perfor-

mance in non-dominant hands across their feature set. Such differences across hands

may be more amplified by MS-related impairment and in this study a greater proportion

of features differed significantly between hands for nPwMS (70%) and aPwMS (57%)

compared with HC (40%). Therefore, digital tests of upper extremity function that are

conditioned on the hand used may be more sensitive to MS disease severity and changes

in disease course.

4.2. Model Discussion

The DaS testing battery is an information-rich but dimensionally dense test. Similar

features can be extracted from 6 different shapes, quickly accumulating the overall

volume of features and contributing to redundancy. Many features exhibited collinearity

within and between shapes. Hence, LASSO L1-regularization was employed in order to

reduce the feature space, minimise the effects of collinearity and identify important
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predictors of 9HPT time. Recording the relative frequency at which features were

selected allows an interpretation of the feature type and shapes that are most useful

to probe aspects of MS disease. Novel features such as Hausdorff distance drawing

error or drawing entropy calculated from heat-map transformations appear as strong

predictors of the 9HPT. The spiral and figure-8-shapes occupy the top feature ranks,

especially for non-dominant handed tests. In addition, overall model performance (Table

4, Figure 6) also demonstrated that reconstruction of non-dominant 9HPT was more

accurate (MAE: 6 features, 1.93 ± 0.08 [s]), generally with much fewer features than

dominant handed 9HPTs (MAE: 16 features, 2.21 ± 0.08 [s]). Comparison of IRLS

prediction error between handed models revealed that in HC, 9HPT times are more

accurately predicted for dominant handed tests compared with non-dominant handed

tests, whereas the improvement in prediction accuracy (i.e. reduced MAE) was strongly

driven by the nPwMS and aPwMS groups (Table 3). We hypothesise that more complex

shapes, tested using a weaker hand, elicit a wider stratification of PwMS subjects’

performance and disease manifestation.

Furthermore, this breakdown of prediction error by subject group demonstrated that

HC and nPwMS 9HPT times were accurately predicted by DaS features for both handed

tests (Table 3). High reconstruction accuracy of 9HPT times can be deduced considering

that the MAE for HC subjects (1.81 ± 1.32, 1.93 ± 1.12 [s]) was close to the standard

deviation of HC 9HPT times (18.3 ± 1.7, 19.1 ± 1.8 [s]) for both dominant and non-

dominant handed tests, respectively. Similarly it was shown that MAE for nPwMS (1.98

± 1.15, 1.62 ± 1.10 [s]) was similar to the variability of their actual 9HPT times (19.4

± 2.1, 20.1 ± 1.6 [s]).

Higher 9HPT times (those subject observations indicated as aPwMS) were however

found to be more erroneously predicted for both handed tests (3.81 ± 2.28, 3.51

± 1.56 [s]). Visual examination of the distribution of actual 9HPT times (Figure

7) demonstrated that greater 9HPT times exhibited higher variance between subject

measurements, representative of an inverse Gaussian distribution. Figure 8 corroborated

this heteroscedastic observation, further demonstrating that greater 9HPT times

exhibited higher variance within subject measurements (r2 = 0.54, P <0.001). As 9HPT

times are measured in seconds and are unbounded, hesitations, incorrect movements and

the erratic impact of dropping a peg outside of the board—which are more likely in those

with greater UE impairment—can compound to greater magnitudes of accumulated

9HPT times. Consequently, higher 9HPT tests become more variable and less stable,

both between and within subjects with greater UE impairment. Nonetheless, the MAE

for aPwMS (MAE: 3.81 ± 2.28, 3.51 ± 1.56 [s]) was still less than the standard deviation

of 9HPT for this group (9HPT: 26.3 ± 5.4, 27.2 ± 5.0 [s]).

Comparison of the out-of-sample test prediction error across CV repetitions

demonstrated that RFR and SVR, both non-linear techniques, performed slightly better

than OLS or IRLS models. RFR intrinsically uses non-linear feature selection compared

to SVR which is dependent on linearly selected features from LASSO, and gave minimum

prediction error. However, considering the units of measurements for 9HPT is seconds
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[s], differences between models of 0.5 seconds can be considered minimal. As such it

can be assumed that a simple linear function can accurately and adequately capture the

relationship between 9HPT and DaS features.

4.3. Limitations

While the results presented in this study demonstrate the utility of using digitally

captured DaS features with high concurrent validity as demonstrated by their capacity

to predict clinical 9HPT times, there are a number of important limitations which need

to be addressed.

First, a limitation of this work is the reliance on estimating a narrow clinical proxy of UE

function as a ground truth. As discussed, the 9HPT aims to evaluate UE impairment

in PwMS, but given it is measured in seconds it can exhibit a large heteroscedasticity

and can be highly variable, especially for longer completion times. It was observed

that higher 9HPT times had a higher variance for intra subject measurements over

clinical visits (Figure 8). As such, the 9HPT time should instead not be considered

an exact measure of UE impairment, but rather an estimate of a severity range of

function that may be impaired. Multiple sclerosis is a heterogeneous disease which

can not only manifest differently across people, but symptoms may vary within specific

domains, including UE function. Some studies even suggest only moderate test-retest

reliability of the 9HPT when examined in a large healthy cohort [12], rather than more

disabled PwMS of other studies [7]. Reliance should therefore not be weighted on one

test administered infrequently, such as the 9HPT, to effectively capture all aspects of

UE function. HC and nPwMS for example were not significantly discriminative of each

other based on 9HPT times (dominant: P=0.11; non-dominant: P=0.08). These are all

limitations that should be considered when reporting predictions of any model mapping

direct to the 9HPT.

The FLOODLIGHT cohort analysed in this study is relatively small (n=93 subjects).

Most MS patients were mildly disabled with respect to their overall and motor specific

clinical scores (Table 1), and it was observed that the distribution of the 9HPT was

highly tailed and skewed towards shorter 9HPT times. As a result, our models

systematically underestimated 9HPT scores for aPwMS groups yet more accurately

predicted shorter 9HPT times, where a greater density of similar observations were

available, i.e. the HC and nPwMS subjects. The sparsity in the representation of

aPwMS—who additionally are characterized by higher intra- and inter-subject 9HPT

variability—limited our ability to learn a more accurate global model on longer 9HPT

times. This work may therefore be biased by uneven distributions of UE impairment

despite CV stratification.

Another constraint bound by low subject numbers occurs as generalisability problems

across cross-validation folds. A low standard deviation in MAE and RMSE regression

error ( ± 0.5 [s]) was observed across CV repetitions (Table 4), demonstrating that

results do not change with different permutations of subjects within CVs. Despite this,
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it was found that feature distributions may not generalise across training, validation

and test sets within CV folds, leading to sub-optimal loss minimisation during the

training phase. As a result, spurious feature sets and model parameters may be

chosen, which can lead to more erroneous 9HPT reconstruction. Furthermore, while

cross-validation itself is a popular and robust method to determine model performance

and generalisability, independent test sets should ideally be used to obtain unbiased

estimates of the relationship between the 9HPT and DaS features.

This study is longitudinal and data captured can span weeks’ worth of testing. A definite

limitation is that the temporal aspect of this data is not fully utilised. Instead subject’s

features are smoothed down as the mean and standard deviation across all their available

data. While the standard deviation is a coarse measure of subject variance across the

study, more specific time-series modelling of the DaS Test may reveal additional detailed

insights to the progression and characteristics of PwMS. For example, previous work by

Prince et al [52] has shown insights into the longitudinal UE behaviour of patients with

Parkinson’s Disease using a smartphone based tapping assessment.

Overall, it must be considered that FLOODLIGHT was a proof-of-concept study with

relatively few subjects. While this study helps establish a methodological foundation to

construct models that can identify patterns of PwMS UE impairment, further studies—

especially with a more heterogeneous and diverse set of subjects—and subsequent

analysis will be needed to fully probe the clinical validity of remote smartphone

assessments in PwMS.

5. Conclusion

This study illustrates that UE function can be assessed in remote settings using

smartphone technology. The analysis from the Draw a Shape (DaS) test, a smartphone-

based UE function test in which subjects trace specific shapes, expands on the feature

space developed by similar studies investigating UE function in other disease areas

[27, 28, 29, 53] and contextualises how new and existing features can be used to

characterise UE impairment in PwMS. Multivariate modelling of these features was

shown to reliably predict 9HPT times.

While perfect reconstruction of the 9HPT was not possible due to the sparsity of the

dataset and the inherent limitations of the 9HPT itself, DaS features may contain

a greater wealth of information supplementing beyond discrete 9HPT scores. Key

advantages of digital tests like the DaS test are that they can be administered at

high frequency, longitudinally and remotely in free-living environments. More frequent

and ecologically valid outcome measures of UE impairment are needed to advance

progressive MS research and help make clinical trials more efficient by improving power

through sensitive and responsive endpoints. In this respect, the wealth of intra-task

UE functional information that encapsulates the DaS feature space administered at

higher and potentially daily frequency might be better suited in capturing subtle clinical

changes seen in relation to the progressive course of MS than the 9HPT, which is
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typically administered only every 3 to 6 months. This study with ongoing further work

therefore establish the foundation of how digital sensor-based assessments may enable

an out-of-clinic objective augmentation of traditional rater-administered assessments of

UE impairment in MS and other neurological disorders.
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Moreau. Mscopilot, a new multiple sclerosis self-assessment digital solution: results

of a comparative study versus standard tests. European journal of neurology, 2019.

[17] SH Alusi, J Worthington, S Glickman, LJ Findley, and PG Bain. Evaluation of

three different ways of assessing tremor in multiple sclerosis. Journal of Neurology,

Neurosurgery Psychiatry, 68(6):756–760, 2000.

[18] Somayeh Aghanavesi, Dag Nyholm, Marina Senek, Filip Bergquist, and Mevludin

Memedi. A smartphone-based system to quantify dexterity in parkinson’s disease

patients. Informatics in Medicine Unlocked, 9:11–17, 2017.

[19] K. Banaszkiewicz, M. Rudzinska, S. Bukowczan, A. Izworski, and A. Szczudlik.

Spiral drawing time as a measure of bradykinesia. Neurol Neurochir Pol, 43(1):16–

21, 2009.

[20] P. Feys, W. Helsen, A. Prinsmel, S. Ilsbroukx, S. Wang, and X. Liu. Digitised

spirography as an evaluation tool for intention tremor in multiple sclerosis. J

Neurosci Methods, 160(2):309–16, 2007.

[21] Min Wang, Bei Wang, Junzhong Zou, and Masatoshi Nakamura. A new

quantitative evaluation method of spiral drawing for patients with parkinson’s

disease based on a polar coordinate system with varying origin. Physica A:

Statistical Mechanics and its Applications, 391(18):4377–4388, 2012.

[22] Mitchell Grant Longstaff and Richard A Heath. Spiral drawing performance as an

indicator of fine motor function in people with multiple sclerosis. Human movement

science, 25(4):474–491, 2006.

[23] Hongzhi Wang, Qiping Yu, Mónica M. Kurtis, Alicia G. Floyd, Whitney A.

Smith, and Seth L. Pullman. Spiral analysis—improved clinical utility with center

detection. Journal of Neuroscience Methods, 171(2):264–270, 2008.



REFERENCES 24

[24] Michael P. Caligiuri, Hans-Leo Teulings, J. Vincent Filoteo, David Song, and

James B. Lohr. Quantitative measurement of handwriting in the assessment of

drug-induced parkinsonism. Human Movement Science, 25(4–5):510–522, 2006.

[25] Xuguang Liu, Camille B. Carroll, Shou-Yan Wang, John Zajicek, and Peter G.

Bain. Quantifying drug-induced dyskinesias in the arms using digitised spiral-

drawing tasks. Journal of Neuroscience Methods, 144(1):47–52, 2005.

[26] Manuela Galli, Sara L Vimercati, Elena Manetti, Veronica Cimolin, Giorgio

Albertini, and Maria F De Pandis. Spiral analysis in subjects with

parkinson’s disease before and after levodopa treatment: a new protocol with

stereophotogrammetric systems. Journal of applied biomaterials functional

materials, 12(2), 2014.

[27] M. Memedi, S. Aghanavesi, and J. Westin. A method for measuring parkinson’s

disease related temporal irregularity in spiral drawings. In 2016 IEEE-EMBS

International Conference on Biomedical and Health Informatics (BHI), pages 410–

413, 2016.

[28] Aleksander Sadikov, Vida Groznik, Martin Možina, Jure Žabkar, Dag Nyholm,
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